Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теси л волокно

    Пентахлорфенолят натрия дозируют в количестве 7 —14 кг на 1 т сухого волокна. После окончания перемешивания для максимального удержания препарата на волокне pH понижают до 4,5, что приводит к коагуляции на волокне нерастворимого пентахлорфенола. Нерастворимые препараты можно вводить при проклейке массы — смоляной или асфальтовой. Ацетат фенилртути применяется в количестве 0,18—0,36 кг па 1 те волокна. [c.101]


Рис. 6-63. Потеря массы углерода в углеродных волокнах, полученных при 2100 и 2800 С, в зависимости от температуры и времени фторирования [6-157]. Обозначения те же, что и на рис. 6-54. Рис. 6-63. <a href="/info/63320">Потеря массы</a> углерода в <a href="/info/77503">углеродных волокнах</a>, полученных при 2100 и 2800 С, в зависимости от температуры и времени фторирования [6-157]. Обозначения те же, что и на рис. 6-54.
    Для определения сминаемости волокон и тканей важно знать сопротивление волокна изгибу. Волокно сминается при изгибании под острым углом, что приводит к возникновению больших напряжений на поверхности волокна (при малых напряжениях гибкость и упругость нормальны). Поэтому следует ожидать большого влияния структуры волокна и тканей на их сопротивление сминаемости. Одиако, наибольшее значение имеет характер самого волокна. Например, белковые волокна устойчивее к сминанию, чем целлюлозные, так как их молекулы более гибки и образуют сетчатую структуру за счет химических связей. В целлюлозных волокнах взаимодействие между макромолекулами обусловливается слабыми связями, прочных первичных связей в этих волокнах нет. Таким образом, сминаются те волокна, у которых отсутствуют прочные химические связи, способные придать устойчивость [c.119]

Рис. 9-32. Связь прочности и модуля упругости прн растяжении с деформацией волокна [9-25]. Обозначения те же, что на рис. 9-31 Рис. 9-32. <a href="/info/23139">Связь прочности</a> и <a href="/info/9035">модуля упругости</a> прн растяжении с <a href="/info/267478">деформацией волокна</a> [9-25]. Обозначения те же, что на рис. 9-31
    На месторождениях добывают природный газ, этан, а в некоторых случаях и попутные газы — конденсат, который состоит из насыщенных углеводородов (пропана и обоих бутанов). Это и есть те самые насыщенные СНГ (рис. 49), которые могут быть использованы вместе с этаном или дистиллятом в качестве сырья для производства (паровой крекинг) ненасыщенных СНГ — соответственно пропилена и бутенов. Ненасыщенные СНГ вместе с этиленом в химической промышленности являются основой для производства резины, химического волокна и пластмасс. При соединении ненасыщенных СНГ с насыщенными (пропаном и бутеном) можно получать бытовые и промышленные сорта топливного газа. Обычно это делается во время падения спроса на промежуточные химические продукты. [c.246]


    Покрытия на основе битумных растворов, наносимых на трубопроводы в холодном состоянии, должны отвечать тем же эксплуатационным требованиям, что и эмали, которые наносят в расплавленном состоянии. В них вводят те же наполнители, но при несколько более высоком отношении наполнителя к битуму. Более высокое содержание наполнителя необходимо для регулирования эксплуатационных свойств, предупреждения текучести и оседания в процессе испарения растворителя. В битумах этого типа иногда используют асбестовое волокно. [c.213]

    Кислотными красителями окрашивают те волокнистые материалы, которые содержат основные группы и, в первую очередь, аминогруппу—ЫНг. Этими красителями окрашивают шерсть, натуральный шелк и полиамидные волокна (капрон, анид, энант, найлон и др.). Крашение проводят в кислой или нейтральной среде. Механизм крашения описан на стр. 269. [c.282]

    Судя по результатам этих и других опытов (см. ссылку 197), можно констатировать, что вред, причиняемый текстильным волокнам при нормальных условиях окончательной обработки предметов не имеет сколько-нибудь важного значения. Более близкое отношение к рассматриваемой теме имеют не указанные необратимые последствия, а те обратимые изменения, которые наблюдаются в различных волокнах, подвергнутых действию теплоты. [c.221]

    Ниже рассматриваются основные технологические операции и те изменения структуры и свойств волокна, которые при этом происходят. Изменения физико-механических свойств вискозных волокон с различной структурой в зависимости от температуры карбонизации иллюстрируются данными, полученными [9, с. 201-206] на нитях, характеристики которых даны ниже (метрический номер 5,45)  [c.234]

    Способы изготовления пористых трубчатых каркасов (опор и подложек). Пористые трубчатые опоры изготовляют различными способами набивкой на оправу нескольких слоев филаментного синтетического волокна или стекловолокна с последующей частичной пропиткой обра зованной конструкции смолой, плетением рукавов из синтетических ни тей или нержавеющей проволоки, перфорацией металлических труб прессованием из керамических, металлокерамических или пластмассо ВЫХ порошковых материалов, пропиткой наполнителя термопластами а также на основе поропластов. С целью снижения гидравлического сопротивления потоку фильтрата в плетеных и витых опорах между слоями иногда укладывают продольные волокна, а в непористых опорах на рабочей поверхности делают продольные пазы. С этой же целью иногда опоры изготовляют из пучков волокон или из гофрированной ткани, образующей после ее пропитки смолой и отверждения жесткий пористый каркас с продольными каналами для отвода фильтрата [122]. [c.126]

    Собственно процесс окрашивания (т. е. выбор красителя и способ крашения) в значительной степени зависит от типа взятого волокна. Так, например, волокна животного происхождения, такие, как шерсть или шелк, т. е. волокна белкового характера, красят кислотными или основными красителями, которые реагируют с основными или кислотными группами белковых -макромолекул. Напротив, целлюлозные волокна, например хлопок, лен или коноплю, часто окрашивают красителями, которые образуют водородные связи с молекулами волокна. Такие красители называют субстантивными. Активные красители— это те, которые реагируют с помощью одной из своих групп с определенной группой окрашиваемого волокна, например образуя эфирные связи на макромолекулах целлюлозы. Все четыре названных типа красителей, т, е. кислотные, основные, субстантивные и активные, относятся к так называемым прямым красителям. Для синтетических полиамидных волокон (силон или найлон), полиэфирных волокон (тесил) или полипропилена используются другие красящие средства, которые в отличие от рассмотренных, не образуют химических связей с волокнами. [c.300]

    В нашу задачу не входит систематическое и полное изложение технологии производства антикоррозионной бумаги. Мы хотели бы здесь обратить внимание лишь на те особенности производства, которые оказывают заметное влияние на качество материала, его потребительские свойства и технико-экономические показатели, дать представление о правильном выборе сырья, материалов и оборудования. Последнее важно, так как зачастую для производства антикоррозионных бумаг используется несовершенное в техническом отношении оборудование, без учета особенностей взаимодействия растворов или дисперсий ингибиторов с бумагой-основой, их удержания структурой целлюлозного волокна и их высокой летучести при последующих сушке и эксплуатации у потребителя. При выборе бумаги-основы необходимо учитывать тип оборудования для производства бумаги режим работы наносного узла вид используемого ингибитора и физико-химические характеристики его растворов или дисперсий вид используемого [c.143]

    Разрушение бумажной упаковки начинается с момента достижения паровой фазой, окружающей металлоизделие, точки росы, что сопровождается конденсацией паров воды и увлажнением бумаги в месте ее контакта с металлом. Разрушению подвергаются лишь те увлажненные места бумаги, которые содержат локализованный ингибитор в виде крупных включений. Именно с растворения ингибитора в воде начинается набухание целлюлозного материала, сопровождающееся разрывом связей между волокнами в листе бумаги и созданием условий для ее последующего разрушения, что происходит при контакте с металлоизделиями, содержащими медь, кобальт, цинк, кадмий, никель и т. д. [c.153]


    Печатание тканей (печать, набивка), узорчатое или одностороннее крашение. Принципиальной разницы между крашением печатанием (П.) с точки зрения механизма взаимод, красителя с субстратом нет. Существуют различия в требованиях, предъявляемых к красителям для П. и крашения. Водорастворимые красители должны иметь высокую р-римость, а нерастворимые - высокую дисперсность, т. к. концентрация красителя для П. должна быть значительней выше, чем в красильной ванне. В состав краски для П. входят краситель, загуститель (крах.мал, декстрин, агар-агар, акриловая эмульсия и др,) и разл, вспомогат, в-ва (катализатор, мягчитель и т,д,). От загустителя зависит степень фиксации красителя, четкость контура рисунка, устойчивость окраски и гриф текстильного материала. Фиксация красителей на волокне при П. происходит, как правило, при более высоких т-рах и в более жестких условиях, чем при крашении. Для П. можно использовать те же классы красителей, что и для крашения, однако практически используются только красители, имеющие высокую устойчивость к мокрым обработкам, т.к. после фиксации красителя требуется тщательная промывка. [c.503]

    Как следует из табл. 58,. о-ксилол является наиболее высококипящим из всех изомеров ксилола. Его применяют для получения фталевого ангидрида. Процесс основан, как и окисление нафталина, на газофазном окислении над ванадиевым контактом (оронит-процесс). Равным образом и /г-ксилол представляет большую ценность как исходный материал для получения те-рефталевой кислоты, применяемой в производстве волокна (териленовое волокно в Англии, декроновое в США, тревира в Германии). С этой целью смесь м- и п-крезолов охлаждают до —60° и выкристаллизовавшийся п-крезол отделяют центрифугированием. Выход га-ксилола ограничивается образующейся эвтектикой, состоящей из 88% J t-к илoлa и 12% ге-ксилола. [c.110]

    Однако гидротермопластичными и растворимыми могут быть названы только те волокна и пленки, которые легко набухают и растворяются в наиболее доступном растворителе — воде и водных растворах. Применение других растворяющих сред, как правило, затруднено из-за их вредности, необходимости герметизации оборудования и регенерации растворителей и по ряду других причин. [c.3]

    Наилучшие текстильные свойства обычно имеют те волокна, у которых сравнительно небольшие нагрузки не вызывают значительного удлинения и которые в процессе переработки вытягиваются незначительно. Прецмущество этих волокон заключается в том, что даже при некоторой неравномерности в натяжении на крутильной или другой текстильной машине получаемые нити не отличаются существенно по степени вытягивания, как это непременно имело бы место у волокон, обладающих большим удлинением при сравнительно невысоких нагрузках. Поэтому желательно получать волокна, для которых диаграмма Н-У в области небольших нагрузок, например до 2—3 кг/мм , имеет форму прямой линии. Волокна, для которых кривая Н-У аналогична приведенной на рис. 7, при прочих равных условиях следует предпочитать волокнам, для которых кривая Н-У изображена на рис. 8, так как волокна первого типа меньше подвержены вытягиванию при переработке. [c.19]

    Известно много видов природных волокон, обладающих различными свойствами. Однако не се они могут быть отнесены к текстильным волокнам, так как сырьем для текстильной и трикотажной промышленности могут служить только те волокна, которым прис тци определенные физико-механические свойства, в частности они должны быть очень тонкими и иметь достаточные длину, проч1ность, зластичн01сть, упругость и т. п. [c.19]

    Многие кристаллическне полимеры разлагаются ниже их точки плавления. Однако точку плавления можно понизить ниже температуры разложения добавлением подходящего второго компонента. Эвтектическая точка плавления смеси с таким вторым компонентом, которую можно наблюдать в микроскоп с нагревательным столиком, столь же полезна для целей идентификации, как и точка плавления исходного вещества. Подходящим вторым компонентом для получения стандартных смесей с синтетическими волокнами является п-питрофенол. Те волокна, которые не плавятся и не обнаруживают эвтектического плавления при добавлении этого вещества, проявляют характерные, легко различимые и достаточно воспроизводимые изменения резкое продольное сжатие, поперечное разбухание и частичную или полную растворимость волокна в расплавлепном п-иитрофеноле. п-Нитрофенол начинает возгоняться при температуре выше 80° и иногда конденсируется на покровном стекле в виде капель. Поэтому признаки эвтектического плавления при температуре выше 80° надо искать в волокне, а не в п-нитрофеноле. [c.24]

    За последние годы в связи с развитием производства синтетического волокна лавсан, основу которого составляет те-рефталевая кислота, особое внимание уделяется параксилолу. Вследствие этого значительный интерес приобретает разработка метода изомеризации орто- и метаизомеров в параизомер. [c.23]

    ГИЮ. Рано или поздно весь громадный ассортимент органических продуктов превращается в пластмассы, синтетические волокна, синтетические каучуки, синтетические моющие средства и растворители. Каждая из этих пяти групп конечных химических продуктов, в свою очередь, располагает широким ассортиментом, иногда в сотни названий. Но вот, например, в пластмассах более 80% всего выпуска приходится на полиэтилен и полипропилен, поливинилхлоридные пластикаты, полистирольные и фенолофор-мальдегидные смолы различных модификаций. Эдакое унифицированное разнообразие. То же и в каучуках, где те же 80% общего выпуска представлены полимерами 1,3-бутадиена и 2-метил-1,3-бутадиена (изопрена). [c.105]

    Шелк Шардонне, медно-аммиачный шелк и вискозный шелк в химическом отношении представляют собой регенерированную, пере-осажденную целлюлозу, и для них не могут совершенно бесследно пройти те различные химические воздействия, которым целлюлоза подвергается в процессе переработки. Они обладают признаками некоторого неглубокого расщепления слегка повышенной восстановительной способностью, большей гигроскопичностью и увеличенной восприимчивостью к красителям. Некоторые из этих особенностей отчасти объясняются тем, что физическое строение искусственного шелка отличается от строения волокна природной целлюлозы. Мельчайшие частицы целлюлозы, ее мицеллы, или кристаллиты, расположены в нитях искусственного шелка в большей пли меньшей степени беспорядочно, а не ориентированы вдоль оси волокна, как в природной целлю.тозе. На физические свойства волокна оказывает влияние ослабление связей между мицеллами и увеличение активной поверхности. Это приводит к повышению адсорбционной способности искусственного шелка по отношению к воде и красителям, а также к уменьшению химической и механической прочности. Устойчивость искусственных и природных волокон целлюлозы по отношению к действию ферментов тоже не одинакова волокна искусственного шелка при действии целлюлазы , содержащейся в улитках и других беспозвоночных, сравнительно легко и полно превращаются в сахара, тогда как расщепление природной клетчатки (хлопка) происходит значительно медленнее. [c.465]

    Обширный обзор экспериментальных установок, необходимых для исследования напряженных волокон в ЭПР-резонаторе, содержится в работе Рэнби и др. [2]. Эти установки значительно более сложные, чем аппаратура для исследования порошков, хотя требования по регулированию температуры и атмосферы, окружающей образец в резонаторе, почти те же самые. Известны рычажные и гидравлические системы нагружения с сервомеханизмами [29, 37, 44, 60], с помощью которых запрограммированная по определенному закону нагрузка и деформация могут быть приложены к пучкам волокон (или другим растягиваемым образцам) непосредственно в резонаторе. Необходимо, чтобы растяжение упругих образцов проводилось в таком температурном режиме, при котором можно легко наблюдать спектры свободных радикалов. Для термопластичных волокон этот режим соответствует температура.м 200—320 К предварительно ориентированные волокна каучуков необходимо испытывать при температурах 93—123 К- При этих температурах первичные свободные радикалы достаточно подвижны, чтобы быстро вступать в реакции с атомными группами своей или других цепных молекул, с абсорбированными газами, примесями или включениями, действующими в качестве лову- [c.182]

    Поскольку проскальзывание цепей, микрофибрилл и фибрилл уменьшает вероятность механического разрыва цепей или не допускает его совсем, то высокоориентированные волокна термопластов, подверженные пластическому деформированию лишь в определенных условиях, являются наиболее подходящими объектами для исследования кинетики разрыва цепи. Исследования методом ЭПР на волокнах ПА-6, ПА-66, ПА-12, ПЭ, ПП, ПЭТФ и других материалов были выполнены в отдельных лабораториях вначале в СССР, а позднее в США, ФРГ, Великобритании и Японии (см. табл. 6.2). Практически все исследователи имели дело с высокоориентированными одиночными волокнами, пучком полосок или с выпускаемыми промышленностью нитями, содержащими по нескольку сот волокон диаметром 20 мкм каждое. Как показало рассмотрение структуры волокна (гл. 2), оно состоит из фибрилл, а те в свою [c.187]

    Если сначала рассмотреть черты, общие для водной и невод-пой систем, то выяснится, что прежде всего характер загрязняющего вещества и способ его прилипания к ткани в обоих случаях одни и те же. Надо, правда, оговориться, что шерсть чистится преимущественно химическим способом, а не стиркой, и что вообще говоря, поверхности волокон шерсти и целлюлозы существенно отличаются друг от друга. Все же большинство видов искусственного шелка и некоторые хлопчатобумажные ткани с одинаковым успехом очищаются в любой из названных систем при умовии, конечно, принятия соответствующих мер предосторожности. Далее одинаковым для обеих систем является механическое воздействие на ход чистки (перемешивание). Понятно также, что обе системы преследуют одну и ту же цель, а и.менно отделение пятпа от ткани и стабилизацию раствора с вытекающими отсюда эмульгированием или суспензией. Если подытожить общие для обеих систем черты, то можно сказать, что одинаковыми для них являются загрязнитель, волокно, стоящая перед ними задача и основной предмет применяемого оборудования (промыватель). Все остальное не только не похоже, но радикально различно. [c.99]

    Термопластики, образующие волокна, находятся при обыкновенной температуре, так сказать, в полупластическом состоянии. Этим объясняются те характерные для текстильных волокон свойства, благодаря которым они образуют единственную в своем роде группу твердых тел. Свойства отдельных волокон варьируют соответственно равновесию, которое существует между их кристал- лической и пластической (аморфной) зонами. Ранее уже было-сказано о том, как это влияет на равновесную влагу в волокнах, а также о том, какое действие производит эта равновесная влага на жесткость волокон путем разрушения некоторых связей между цепями соседних молекул. Выше было также упомянуто, что у целлюлозных и белковых волокон указанные связи между цепями, которые могут быть обратимо разрушены водой, представляют собой преимущественно водородные связи. Последние не являются связями, обладающими высокой энергией присущая им энергия равна примерно 4500 калориям/М (см, ссылку 198). Для сравнения можно привести энергию ковалентной связи, существующей между кислородом и водородом, которая составляет 110 000 калорий/М. Влияние водородных связей на жесткость и частичную кристалличность волокон основано на возможности образования большого количества именно таких связей между соседними молекулами. Отсюда явствует, что количество тепловой энергии, требуемой для разрушения этих связей, должно быть значительным, но ее интен- [c.222]

    Оптич. потери (теоретические) у бескислородных оптич. стекол на 1-3 порядка ниже, чем у оксидных. В качестве таких материалов для ИК диапазона используют обычно разл. халькогенидные стекла, содержащие Аз, 8 (8е, Те), 8Ь, Р, Т1, Ое и др. Наим, оптич. потерями в ИК диапазоне обладают оптич, волокна на основе галогенидов Ag, Т1 и их твердых р-ров и волоконные световоды на основе фтороцирконатных (содержат 2г, Р с добавлением Ва, 51а, РЗЭ и др.) и халькогенидных стекол [содержат А8-8(5е)-Се]. [c.392]

    Прежде всего к волокнам прилагают в течение определенногс времени какое-либо растягивающее усилие и измеряют длину ткани по истечении установленных промежутков времени. Затем освобо ждают волокна от растягивающего усилия, но продолжает измерение длины ткани через те же интервалы до тех пор, по а не пре  [c.243]

    В связи с засекреченностью многих проводимых в те годы работ сложно устанавливать приоритеты в получении УВ различного вида. Можно только констатировать тот факт, что с 1958 по 1966 г. примерно в одно время в США, СССР, Франции, Германии, Англии, Японии были разработаны технологии производства углеродных волокон и начался их выпуск. Вначале было организовано произвадство УВ на основе натуральной целлюлозы и вискозы, а в 60-е годы на основе полиакрилони-трильных (ПАН) волокон. В связи с высокой стоимостью УВ на основе ПАН и требованиями по дальнейшему увеличению модуля упругости композитов в 70-е годы начались разработки и производство УВ на основе нефтяного и каменноугольного пеков. Стоимость волокна была снижена при применении изотропных пеков, а модуль упругости был повышен при использовании анизотропных волокон на основе пековой мезофазы. Однако возникшие проблемы получения пековой мезофазы и одновременной вытяжки из нее большого количества филаментов не позволили получить значительного снижения стоимости УВ. В то же время У В на основе изотропных пековых волокон дешевле УВ, полученных из гидратцеллюлозы. В связи с этим они успешно применяются в Японии и США в композитах с дискретными волокнами. [c.564]

    Для ФС характерно, что их всегда используют в комбинации с армнруюшими наполнителями, в частности с волокнами, когда ФС выполняют функции связующего. Общий объем производства различных материалов на основе фенольного связующего — ДСП, изоляция на основе органических и неорганических волокон, формовочные земли, шлифовальные круги и т. п. — чрезвычайно велик. И место, которое ФС занимают в экономике сегодня, показывает их незаменимость в различных областях техники и в повседневной жизни. Неплавкость, термо- и огнестойкость — вот те главные достоинства, которые определяют дальнейший рост рынка ФС. [c.18]

    Волокна металла, находящиеся между роликами 1 ж 2, деформируются. Те из них, что расположены ио одну сторону от пейтра.льной оси, получают удлинение, а но другую — укорочение. [c.91]

    Пробирку переносят в баню с температурой 273 н снабжают капилляром, доходящим до самого дна. Пробирку откачивают до остаточного давления 1—2 мм в теченне 1—2 час или до те.х пор. пока вязкость расплава не достигнет максимального значения.. Чатем полимер охлаждают в токе азота. Выход количественный (3,6 г). Полимер кристатлмчеп. т. пл. - 130°, логарифмическая приведенная вязкость 0,7—1,0 (0,5%-ный раствор в толуоле при 25°). Значение вязкости 0,95 соответствует молекулярному весу окото 135 000. Из расплава полниилоксана можно получить волокна, способные к вытяжке при комнатной температуре. Более сильную вытяжку можно осуществить при растяжении волокон над поверхностью, нагретой до 50 . [c.164]

    Продукты криеталличны, плавятся при высокой температуре и достаточно термостойки, так что нз них можно получить волокна прядением из расплава. Полиангидриды из сходных по структуре дикарбоновых кислот получил Пота [95Л], применяя по сущ,еству те же реакции, что и описанные выше. [c.174]

    Для крашения натурального шелка используют в осн. металлсодержащие азокрасители (комплексы состава 1 2). Ткань обрабатывают в теплой воде (40 °С), затем вливают р-р красителя и постепенно добавляют СН3СООН, нагревают до 95 °С. После охлаждения красильной ванны ткань промывают теплой водой и для придания блеска обрабатывают в разб. уксусной к-те. К. к. (комплексы 1 2) сорбируются натуральным шелком более чем на 75% макс. сорбция 0,3 г-экв/кг волокна. О крашении полиамидных волокон см. Крашение волокон. [c.392]

    Для обратного осмоса, как правило, используют плоскокамерные, трубчатые и рулонные аппараты для ультра-фильтрации-плоскокамерные и трубчатые для микрофильтрации-те же аппараты, а также обычные патронные фильтры для электродиализа-кроме электродиализаторов, иногда плоскокамерные и с полыми волокнами, снабженные подводкой электропитания для мембранного газоразделв-ния-рулонные, плоскокамерные и трубчатые для испарения через мембрану-те же аппараты, что и для баромембранных процессов, снабженные системами подогрева, вакуумирования,. подачи инертного газа и конденсаторами паров для диализа-плоскокамерные и др. мембранные. [c.27]


Смотреть страницы где упоминается термин Теси л волокно : [c.43]    [c.730]    [c.239]    [c.33]    [c.178]    [c.117]    [c.143]    [c.210]    [c.296]    [c.180]    [c.239]    [c.454]    [c.468]    [c.615]    [c.501]   
Полиэфирные волокна (1976) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Течки



© 2025 chem21.info Реклама на сайте