Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цинк коррозионные испытания

    Этот недостаток особенно ярко проявляется в том случае, когда разбрызгивание нейтральной соли показывает, что для защиты стали лучше использовать кадмий, а не цинк. Известно, что в атмосфере промышленной среды цинк обеспечивает лучшую коррозионную защиту, чем кадмий, а в морских условиях целесообразность применения того или иного покрытия зависит от окружающей среды. Причины этих очевидных аномалий, вероятно, связаны с разной природой данных металлов и растворимостью продуктов коррозии, образующихся в различных условиях. Обильное количество электролита хорошей проводимости, обеспечиваемое при испытаниях на атмосферную коррозию, препятствует какому-либо защитному действию продуктов коррозии, которое может проявляться лишь при высыхании и повторном увлажнении, происходящих естественным путем. Кроме того, переоценивается эффективность действия протекторной защиты, создаваемой анодными покрытиями этого типа. [c.157]


    Каталитическое ускорение окисления нефтепродуктов металлами приводит к образованию веществ, которые в свою очередь взаимодействуют с металлами. Так, сплав МА-5 корродирует под воздействием органических кислот значительно сильнее, чем сталь 20. Однако при испытании коррозионного действия гидрированного топлива на эти металлы оказалось, что сталь 20 корродировала сильнее сплава МА-5. Это объясняется тем, что в топливе Т-7, хранившемся в контакте со сплавом МА-5, кислотность за время хранения не изменилась, а после хранения в контакте со сталью, вследствие каталитического действия стали на процесс окисления, кислотность за 6 мес. возросла с 0,5 до 14,5 мг КОН/100 мл топлива. Нефтепродукты термического крекинга легче окисляются при хранении, поэтому они являются более коррозионно-активными по сравнению с продуктами прямой перегонки. В результате в присутствии крекинг-топлив довольно значительно корродируют медь, цинк и углеродистые стали  [c.117]

    Как показывают длительные испытания, в морской агрессивной атмосфере легирование меди алюминием, цинком, никелем и оловом повышало их сопротивляемость коррозии и поэтому алюминиевые бронзы, томпак, сплавы меди с никелем и цинком, сплавы с никелем и оловом оказываются более стойкими, чем чистая медь. Алюминий оказывает благотворное влияние также в субтропической морской и в сельской атмосферах. Алюминиевые бронзы в этих условиях обнаружили более высокую стойкость. В других атмосферах, и в особенности в промышленных, легирование меди положительных эффектов не давало. Более того, оно часто приводило к понижению стойкости основного компонента сплава. Высокопрочные латуни, содержащие, кроме меди, цинк (20—24%), марганец (2,5—5,0%), алюминий (3—7%) и железо (2—4%), оказались во много раз менее стойкими по сравнению с чистой медью более подробно о коррозионных свойствах различных медных сплавов см. в гл. V). [c.253]

    Технология инжекции алюминия в теплоноситель прошла длительные испытания в реакторных условиях (более 10 лет) и обеспечила снижение мощности доз гамма излучения в 20-40 раз. Показана эффективная работа системы очистки в этих условиях. Достигнуты высокие уровни выгорания топлива — до 52,4 МВт сут/кг и, при этом оболочки твэлов имели высокую коррозионную стойкость. Стоимость алюминия в 10 тыс. раз ниже стоимости цинка, обеднённого по изотопу цинк-64 до 1 %, применяемого для достижения аналогичной цели. [c.232]

    Рекомендация указанного метода определения устойчивости цинкового покрытия основывается па выборе такой концентрации кислоты для обрызгивания, при которой скорость коррозии соответствовала бы определенному сроку испытания в естественных условиях. На наш взгляд, этот метод не совсем оправдан, ибо серная кислота должна сильно изменять характер коррозионного процесса. Цинк в атмосферных условиях корродирует, как правило, с кислородной деполяризацией. Изменение характера деполяризации катодного процесса может исказить результаты. Применение кислых электролитов при ускоренных испытаниях оправдано в тех случаях, когда изделие работает в сильно-загрязненной промышленной атмосфере, где конденсирующийся на поверхности покрытия электролит приобретает вследствие абсорбции сернистого газа слабокислую реакцию. [c.172]


    Степень ускорения коррозионного процесса в присутствии SO2 различна и зависит от характера покрытия металла и от концентрации SO2. Концентрацию SO2 в камере выбирают в пределах 0,01—2,0 % (объемн.). Выбор той или иной концентрации определяется поставленной задачей слишком малые количества SO2 дают незначительное увеличение скорости коррозии, слитном большие не позволяют выяснить разницу в коррозионной стойкости покрытий. Для определения сравнительной устойчивости покрытий в промышленной атмосфере во влажную камеру обычно вводят 0,1% SO2. При проведении испытаний, основное назначение которых — выявить качество покрытия и наличие отклонения от технологического процесса их нанесения, концентрацию сернистого газа в камере увеличивают. При стандартных испытаниях по немецким нормам DIN 50 0 18 предусматривается введение 0,8% SO2 и 0,8% СО2. Дополнительное введение СО2 основывается на том, что некоторые металлы, например цинк и свинец, очень чувствительны к наличию в воздухе этого газа, поскольку в присутствии СО2 образуются продукты коррозии защитного характера. [c.173]

    Цинк чаще всего наносится на материалы с железной основой в качестве антикоррозионной защиты даже в том случае, когда механическая нагрузка полностью воспринимается основным материалом. Поэтому все испытания, которые должны выяснить влияние цинковых покрытий на показатели прочности основного материала, связаны с испытаниями на коррозионную стойкость оцинкованных деталей. [c.205]

    Преимущество кадмиевых покрытий по сравнению с цинковыми обнаруживается при испытаниях в искусственно создаваемых коррозионных средах. В естественных условиях цинковые покрытия — химически более стойкие. В атмосфере промышленных районов и в закрытых помещениях с у.меренной влажностью срок службы кадмиевых покрытий, как правило, меньше, чем цинковых. В морской атмосфере, содержащей хлориды, особых преимуществ одного металла перед другими по химической стойкости не установлено, но при непосредственном соприкосновении с морской водой и аналогичными ей растворами кадмий обладает значительно большей химической стойкостью, че.м цинк. [c.152]

    В промышленных условиях скорость коррозии алюминия составляет только одну треть скорости коррозии цинка и затухает во времени благодаря хорошей адгезии продуктов коррозии. Наряду с этим покрытие может часто действовать как анодное для стали и для менее коррозионностойких алюминиевых сплавов. Хадсон [20] показал, что срок службы алюминиевого покрытия, нанесенного способом напыления на стали, в условиях очень агрессивной промышленной атмосферы Шеффилда составит 4,5 года при толщине покрытия 38 мкм и более 11,5 лет при толщине 75 мкм. Алюминиевое покрытие, полученное напылением толщиной 125 мкм, также обеспечивает полную защиту против расслаивающей коррозии и коррозионного растрескивания алюминиевых сплавов системы алюминий — медь —магний (НЕ 15) и алюминий — цинк—магний (ДТД 683) при испытаниях до 10 лет в промыщленной и морской атмосфере [25, 26]. [c.398]

    Подробные результаты испытаний за два года [4] даны в табл, 7,3. При этом надо помнить, что места испытаний выбираются с таким расчетом, что показать особенности коррозионного поведения в определенном типе атмосферных условий. Отношение потерь сталь/цинк представляет особенный интерес. Оно показывает, что влияние на цинк, намного меньшее, чем на сталь, оказывают атмосферные условия, в которых присутствуют хлориды. [c.418]

    Уменьшение склонности латуни к коррозионному растрескиванию достигается введением в сплав более стойких элементов, чем цинк. Помимо легирования специальными добавками, латунные изделия подвергают также отжигу для снятия внутренних напряжений. С этой целью достаточно подвергнуть изделия отпуску при температуре 200—250° С, при которой не происходит заметного изменения механических свойств. На рис. 89 приведены результаты испытаний по уменьшению склонности латуни Л68 к растрескиванию путем снятия напряжений низкотемпературным отжигом. Из графика следует, [c.119]

    Цинк. Хотя ЦИНК используется в основном в виде гальванического покрытия для защиты стали от коррозии в морской атмосфере, интересно исследовать и коррозионное поведение самого цинка. В течение первых лет экспозиции в морской атмосфере коррозия цинка постепенно замедляется, затем происходит с определенной стационарной скоростью. Например, посла 10- и 20-летней экспозиции в Ла-Джолле (Калифорния) стационарная скорость атмосферной коррозии прокатанных образцов составила 1,75 мкм/год [122]. При испытаниях в Ки-Уэсте (Флорида) установившаяся скорость коррозии была еще меньше — 0,56 мкм/год. В табл. 65 представлены результаты коррозионных испытаний, проведенных в четырех разных местах. В слабо агрессивной сельской атмосфере Стейт-Колледжа (Пенсильвания) скорость коррозии цинка оказалась вдвое выше, чем в Ки-Уэсте, но в полтора раза меньше, чем в Ла-Джолле. [c.165]


    Латуни, т. е. различные по составу и структуре сплавы системы 2п—-Си, дают широкие возможности для наблюдения селективной коррозии или селективного анодного растворения., В результате таких процессов, иногда называемых обесцинкованием, на поверхности сплава остается слой чистой меди или промежуточные фазы, обогащенные медью, а в растворе (коррозионной среде) накапливается цинк. Образование фазы чистой меди в различных коррозионных испытаниях было зафиксировано многими экспериментальными методами рентгенофазовым анализом [50, 55, 119], металлографическим анализом со снятием поперечных шлифов [139], методом-дифракции электронов [133]. другой стороны, химическим анализом [16], полярографией [122, 125], атомно-абсорбционным аналлзом [55] было показано, что в растворе действительно преимущественно содержится цинк. [c.124]

    Сплавы олово—цинк (60—80% Sn) и олово—кадмий (40—80% Sn) можно пассивировать в указанном растворе для пассивации олова или в растворе, содержащем 200 г л ( гОз и 0,25 г л H2SO4. Температура раствора 60—70° С, продолжительность пассивирования 15—30 сек. Последний раствор показал лучшее качество пассивирования сйлавов при сравнительных коррозионных испытаниях в условиях, имитирующих тропический климат. [c.92]

    Токсичность, дефицитность и высокая стоимость кадмия уже давно вызывают необходимость его замены или по крайней мере снижения потребления в гальванотехнике. Одним из вариантов решения этой задачи является применение вместо кадмия цинка с хроматированием его в растворе, содержащем добавку Ликонда ЗЛ (см. гл. 16). Другим путем служит использование электролитических сплавов, в которых наиболее приемлемой легирующей добавкой, по-видимому, может быть цинк. По данным, приводимым в работе [84], коррозионные испытания в атмосфере солевого тумана образцов покрытий с различным соотношением компонентов показали, что при содержании около 40 % цинка они равноценны кадмиевым покрытиям, а при увеличении его до 80 % превышают защитную способность кадмиевых покрытий. Относительно большей стойкостью против коррозии характеризуются покрытия, содержащие 83 % d и 17 % Zn. Сплав, содержащий 90 % d и 10 % Zn, несколько лучше защищает сталь от коррозии в промышленной атмосфере, чем цинковые покрытия, и значительно лучше, чем кадмиевые. Для осаждения сплавов, содержащих 80—86 % d, 20—14% Zn и 77—92 % d, 23— [c.130]

    ЭДА-взаимодействия маслорастворнмых ПАВ и металлов мы изучали на установке конденсаторного типа (ДКРП), используя различные металлы (Ст. 3, Ст. 10, Ст. 45, цинк, медь, бронзу и др.). Одно и то же соединение, являясь донором электронов для одного металла, может быть акцептором для другого. В качестве эталонного металла для классификации ПАВ была выбрана Ст. 10 так как этот металл является стандартным для проведения коррозионных испытаний и дает достаточно хорошую сходимость результатов благодаря относительной стойкости поверхности в атмосфере [14, 15]. Энергетические взаимодействия ПАВ и металла помимо свойств самого металла зависят от полярности и поляризуемости данного ПАВ [15, 108, 121]. [c.153]

    Покрытия сплавом из олова и цинка (- 75% олова) осаждаются из горячей ванны, содержащей олово в виде станната и цинк в виде цианида, наряду со свободной щелочью и цианидом. Аноды применяются того же самого состава. Детали, покрытые таким путем, находят применение в радио и телевизионных установках, обычно конкурируя с кадмированными деталями они используются для покрытия определенных частей самолетов, автомобилей и велосипедов. Покрытие может быть запассивировано в 2%-ной горячей хромовой кислоте и является подходящей основой для покраски. Другой вид использования этого покрытия связан с контактной коррозией. Коррозионные испытания в морской и промышленной атмосферах показали, что алюминиевые конструкции, соединенные со стальными болтами, меньше подвергаются контактной коррозии, если сталь покрыта сплавом олова и цинка. Через 6 мес. болты еще легко вывинчиваются соответствующие результаты с цинковыми или кадмиевыми покрытиями на болтах менее хороши. Поверхностй, покрытые сплавами олова и цинка, легко паяются и позволяют использовать некоррозионные флюсы, что является большим [c.568]

    Испытания в естественных условиях замковых резьб, изготовленных из стали 40ХН, показали заметное повышение предела коррозионной усталости соединения после дробеструйной обработки и металлизационного цинкования (рис. П.12). В результате упрочнения предел выносливости резьбы повышается на 75 % Цинк, находящийся в резьбовых зазорах, защищает сталь от коррозионного воздействия среды, уменьшает щелевую коррозию, а также [c.78]

    Эксплуатационные испытания биоразлагаемых гидравлических масел на базе сложных эфиров показали возможность коррозионного износа деталей из сплавов, содержащих свинец, цинк и олово. Существенные потери массы металлов отмечены при испытании железных пластин со свинцовым, цинковым и оловянным покрытием в среде сложных эфиров триметилолпропана. Химический анализ образовавшегося осадка показал наличие свинцовых, цинковых и оловянных мыл жирных кислот. Ввод 1% карбодиимидов при 80°С резко снизил кислотное число и не привел к образованию нерастворимых осадков. [c.202]

    Серьезной проблемой являются контакты, включающие магниевые сплавы. Лабораторные эксперименты, а также результаты естественных испытаний, изложенные выше, показывают, что магниевые сплавы должны подвергаться усиленной коррозии в агрессивных атмосферах, в контакте с большинством металлов. Только алюминий, цинк и олово, защищенные хорошими органическими покрытиями, не вызывают усиленной коррозии магниевых сплавов. Правда, высказываются сомнения, что при такой высокой разности потенциалов и значительных коррозионных токах обычные органические покрытия вряд ли способны пода-130 [c.130]

    Преимущество кадмиевых покрытий по сравнению с цинковыми обнаруживается лишь при испытаниях в искусственно создаваемых коррозионных средах. При непосредственном соприкосновении с морской водой и. аналогичными ей растворами, а также в тропических условиях кадмий обладает значительно большей химической стйкостью, чем цинк. [c.183]

    Томпсон и Трэйси [184] провели во влажной аммиачной атмосфере испытания напряженных бинарных сплавов меди с цинком, фосфором, мышьяком, сурьмой, кремнием, никелем, и алюминием, Ьсе эти сплавы оказались чувствительными к коррозионному растрескиванию. Время до разрушения образцов сплавов медь —цинк монотонно уменьшалось с повышением содержания цинка, а в случае большинства других сплавов на графике в зависимости времени до разрушения от содержания легирующего элемента имелся минимум. При испытаниях под напряжением около 70 МН/м этот минимум достигался при 0,2% Р, [c.107]

    Степень защиты на практике от действия среды цинком и кадмием, или механическим изолированием, или путем электрохимической защиты в несплошностях зависит от стойкости самого покрытия против действия коррозионной среды. Установлено, что при одинаковой толщине кадмий является более стойким в морской среде и тропической атмосфере, а цинк наиболее стоек в промышленной атмосфере. Это было хорошо продемонстрировано путем сравнительных испытаний, проведенных Бьестеком [2] в различных лабораторных условиях, и Кларком и Лонгхэстом в тропической атмосфере в условиях эксплуатации [c.410]

    Сплавы олово — кадмий в широком диапазоне композиций могут быть осаждены пз станиатно-цианидных растворов или фто-ридно-фторсиликатных растворов [36]. Поведение этих покрытий во многом похоже на поведение оловянноцинковых покрытий, однако кадмий менее эффективен, чем цинк, в отношении протекторной защиты стали. Покрытие, содержащее 25% СЛ, наименее эффективно по способности защищать сталь в порах, покрытие с 50% Сс1 лучше. Покрытие в некоторых условиях образует предельно плотные слои продуктов коррозии и в лабораторной практике при испытаниях методом солевого обрызгивания показывает высокое сопротивление коррозии [37]. Однако покрытия из сплава олово —кадмий не нашли широкого применения в промышленности. Покрытие олова поверх кадмия, которое в комбинации с инертным верхним покрытием защищает металл в порах от ржавчины, было использовано на контейнерах для хранения растворителей и для защиты деталей, применяемых в электротехнической промышленности от коррозионного действия паров органических веществ. [c.428]

    Сводка результатов некоторых вспомогательных испытаний небольших образцов (100 X 50 мм), которые уже были, проведены в течение 3 лет, дана в табл. 19 Они показывают громадное различие коррозионного действия в разных климатах. Интересно сравнить цинк и железо. Во многих местах цинк гораздо менее подвергается коррозии, но в туннеле Дав-Холс он корродирует значительно быстрее, чем железо. [c.201]

    Результаты испытаний, проведенных на огромной коррозионной станции в Кюр-Бич, также заслуживают серьезного изучения. Некоторые кривые коррозия — время имеют нелинейный характер — очень важный факт, указывающий на то, что поспешные выводы из краткосрочных испытаний могут легко привести к серьезным ошибкам. Листовой цинк корродировал вначале быстрее в Кюр-Бич, чем в Миддлетауне, Охайо, но скорость коррозии уменьшалась во времени и после 8 лет испытаний стала очень мала, тогда как скорость коррозии цинка в Миддлетауне оставалась в течение всегО срока испытания примерно постоянной. В отличие от цинка, скорость коррозии медистой стали в Кюр-Бич увеличивалась со временем и, напротив, уменьшалась в Миддлетауне. Различный характер кривых коррозия — время приведен в работе [60]. [c.473]

    Нельзя не подчеркнуть важности получения равномерного по толщине покрытия для достижения максимальных защитных свойств. Это, в частности, относится к оцинкованной проволоке. Очень равномерную толщину можно получить на проволоке, электролитически покрывая ее цинком по методу Тентона (стр. 593) и достаточную равномерность при нанесении цинка на проволоке из расплава в условиях, когда она выходит из ванны вертикально. Однако, на проволоке, оцинкованной горячим способом, имелись участки с самой разнообразной толщиной. В тех случаях, когда покрытие слишком толстое, оно будет легко трескаться при изгибе или закручивании, особенно, если в покрытии имеется большое количество сплава там, где оно тоньше, будет быстрее происходить коррозионное разрушение. Материалы с различной толщиной покрытия не оправдывают затраты на цинк. Важность одинаковой толщины в цистернах выявлена на стр. 583. Многие полезные данные в отношении оцинкованных железных и стальных конструкций (включая проволоку, тросы, полосы и скобяной товар) могут быть найдены в обзоре, выпущенном американским обществом испытания материалов (1956 г.), он содержит 21 спецификацию, 3 рекомендации практикам и 5 методов испытания. [c.576]


Смотреть страницы где упоминается термин Цинк коррозионные испытания: [c.85]    [c.85]    [c.23]    [c.125]    [c.92]    [c.173]    [c.754]    [c.217]    [c.101]    [c.416]    [c.711]    [c.205]    [c.595]   
Коррозия металлов Книга 1,2 (1952) -- [ c.1073 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Испытания коррозионные

Сплавы цинка, коррозионные испытани

Цинк испытания



© 2025 chem21.info Реклама на сайте