Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний растрескивание

    Кроме стойкости к растрескиванию и размыванию футеровка печи, работающей в условиях вакуума при плавке материалов, не должна химически взаимодействовать с жидким металлом, чтобы не вызвать изменения его химического состава. При атмосферном давлении оксиды алюминия и магния и диоксид циркония имеют высокую температуру начала восстановления, вследствие чего возможность восстановления из футеровки печи алюминия, магния и циркония в этих условиях при температурах металла 1500—1600 °С исключается. В вакууме же температура начала восстановления оксидов значительно снижается и, следовательно, возможно загрязнение металла продуктами диссоциации указанных оксидов, даже в случае применения этих оксидов в плавленом виде. [c.95]


    Цветные металлы и сплавы во многих случаях также подвер жены коррозионному растрескиванию. Коррозионное растрескивание наблюдается у алюминиевомагниевых и медноцинковых сплавов. Алюминиевые сплавы, содержащие до 3% Mg, практически не склонны к коррозионному растрескиванию. Наиболее склонными к этому виду разрушения являются сплавы алюминия, содержащие 5—9% Mg, причем эта склонность повышается с увели ением содержания магния в сплаве. Если сплавы даже с высоким содержанием магния подвергнуты гомогенизации, то они теряют склонность к коррозионному растрескиванию. [c.105]

    Коррозионному растрескиванию подвержены многие металлы и сплавы углеродистые и легированные стали, сплавы меди, алюминия, титана, магния и др. В результате взаимодействия статических растягивающих напряжений и коррозионной среды в металле образуются трещины, развивающиеся перпендикулярно направлению действия напряжений и приводящие в конце концов к растрескиванию (разрушению) детали. Течение процесса коррозионного растрескивания обычно предугадать невозможно. [c.450]

    Растрескивания матриц можно избежать путем замены их загущенным электролитом (смеси порошка окиси магния с карбонатами щелочных металлов). При содержании в электролите 50% окиси магния электролит сохраняет свою форму. Пористость загущенного электролита не превышает 15% и при 700 °С он остается непроницаемым для газа. Его электропроводность в несколько раз выше, чем матричного. Устройство элемента с загущенным электролитом принципиально не отличается от описанного выше (стр. 57). При испытаниях элемента, работающего на газолине, был достигнут к. п. д., равный 30%. Задача использования в элементах дешевого топлива пока еще остается нерешенной. [c.58]

    Коррозионное растрескивание наблюдается на алюминиевомагниевых сплавах, содержащих более 7% магния. Указанные сплавы особенно резко проявляют склонность к коррозионному растрескиванию при получении предварительного наклепа с последующим отпуском при повыщенных температурах. [c.181]

    Алюминий, цинк и их сплавы успешно используются в качестве металлизационных покрытий для защиты высокопрочных алюминиевых сплавов типа алюминий — цинк — магний от коррозии под напряжением и коррозионного растрескивания. Разрушение этих сплавов на практике случается очень редко. Напыляемые металлические покрытия толщиной 125 мкм обеспечивают полную защиту сроком более 10 лет, а также протекторную защиту в случае повреждения основного металла. [c.81]

    Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде. [c.109]


    В работе [147] сообщается что растрескивание целой серии а- и a-b )-сплавов при испытании в хлористом магнии при 154 X было главным образом межкристаллитным. [c.382]

    Сплав 6061. Сплав 6061 относится к системе алюминий — магний — кремний и может проявлять склонность к коррозионному растрескиванию в состоянии термообработки Т4, если прн этом использовались высокие температуры с последующим медленным охлаждением. В полностью состаренном сплаве (состояние Тб) имеются включения в виде мелких дисперсных частиц, такой сплав невосприимчив к коррозии под напряжением. [c.156]

    Меры предохранения алюминиевых сплавов от коррозионного растрескивания такие же, как и для сплавов магния — рациональный выбор формы изделия и его термической обработки, наклеп поверхности изделия, защита лакокрасочными и гальваническими противокоррозионными покрытиями. Также применяется металлизация поверхности или одно- или двухсторонняя плакировка деталей. Возможна катодная защита деталей, хотя ее применение весьма ограниченно. [c.79]

    Сплавы алюминия с цинком, медью, марганцем, магнием подвержены коррозионному растрескиванию на воздухе, в растворах хлорида натрия, морской воде. [c.28]

    Коррозионное растрескивание — это разрушение металлов и сплавов при одновременном воздействии коррозионной среды и растягивающих механических напряжений, приводящее к ускоренному образованию коррозионных трещин. Оно наблюдается для многих металлов и сплавов углеродистых и низколегированных сталей, нержавеющих сталей, сплавов меди, алюминия, титана, магния и др. Различные аспекты явления коррозионного растрескивания усиленно изучаются и обобщены в ряде трудов [51, 96, 99, 114—123]. [c.110]

    Сталь 28—4—2 несколько менее устойчива к коррозионному растрескиванию в хлоридных средах, особенно е. 42 %-ном кипящем растворе хлористого магния проявляет высокую коррозионную стойкость в ряде органических и неорганических кислот. Из рис. 60 видно, как легирование никелем, а также медью повышает коррозионную стойкость стали в растворах серной кислоты. В растворах технической фосфорной кислоты (рис. 61) сталь 28—4—2 имеет значительно более высокую коррозионную стойкость, [c.171]

    Присутствие небольших количеств никеля или меди в ферритных сталях делает их склонными к коррозионному растрескиванию при испытании в хлористом магнии. Время до растрескивания в хлористом магнии резко снижается при увеличении содержания никеля до 2 % и более.. Однако при испытании на коррозионное растрескивание в различных растворах хлорида натрия нике,ль (как примесь или легирующий элемент) не вызывает коррозионного растрескивания. Такое же поведение в отношении коррозионного растрескивания отмечено и для меди и высоких концентраций молибдена. [c.173]

    Ввиду того что в алюминии при высоких температурах может растворяться до 15% магния, а при низких — только 3—4%, закаленный твердый раствор высоколегированного магналия находится в пересыщенном метаста-бильном состоянии, и уже при слабом нагреве, начиная с 50—60°С, происходит распад твердого раствора и выделение анодной фазы преимущественно по границам зерен сплава. Растворение анодной фазы М22А1з при воздействии коррозионной среды приводит к образованию узких надрезов — концентраторов напряжений, и при одновременном воздействии растягивающих напряжений сплав подвергается коррозионному растрескиванию. [c.57]

    Для проверки применимости электрохимической теории коррозионного растрескивания был поставлен специальный эксперимент. Он заключался в измерении критического потенциала инициирования КРН нержавеющей стали 18-8 в кипящем при 130 °С растворе хлорида магния с добавками и без добавок ингибирующих анионов [22]. Анодная поляризация тем скорее вызывает растрескивание, чем положительнее потенциал катодная поляризация, наоборот, увеличивает время до растрескивания. При потенциале ниже критического значения —0,145 В сплав становится практически устойчив (рис. 7.5, а). Добавление различных солей (например, СНдСООНа) к раствору Mg l2 повышает критический потенциал. Когда критический потенциал становится положительнее потенциала коррозии, КРН прекращается (рис. 7.5, Ь). Следовательно, если критический потенциал равен потенциалу анода разомкнутой цепи, характеризующему катодную защиту, при которой скорость коррозии равна нулю (см. разд. 4.10), потенциал коррозии не может быть ниже критического. Однако, ввиду того что критический потенциал может быть и ниже, и выше потенциала коррозии, он должен иметь другое объяснение. [c.140]

    На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен. [c.215]


    Свободный оксид магния MgO, обожженный при высокой температуре (периклаз), как и свободный СаО, гидратируется в уже затвердевшем цементном камне (после 6 мес при нормальной температуре еще наблюдается его присутствие в иегидратированиом состоянии) с увеличением объема твердой фазы, что также может вызвать растрескивание цемента. Поэтому содержание оксида магиия в сырье для производства портландцемента ограничивается определенными пределами. [c.86]

    Если силикат содержит много полуторных окислов, то осадок гидроокисей увлекает при осаждении некоторое количество солей щелочных металлов. В этом случае осадок гидроокисей растворяют в соляной кислоте и снова проводят осаждение смесью NH OH и (NHJj Oj, а фильтрат от этого второго осадка присоединяют к основному раствору, содержащему соли щелочных металлов и магния. Так как для осаждения магния необходимо прежде всего удалить аммонийные соли, то раствор выпаривают досуха и сухой остаток осторожно прокаливают. Прокаливание нужно вести очень осторожно, потому что некоторые кристаллы содержат маточный раствор, при испарении которого происходит растрескивание кристаллов, и, вследствие этого, может произойти частичная потеря их. Остаток после прокаливания растворяют в небольшом количестве воды и отфильтровывают от нерастворимой части (основные соли магния, углерод, ofipa-зующийся при прокаливании органических примесей, и т. п.). [c.471]

    Решетки для аппаратов этого типа иногда изготовляются из алюминиево-магниевых сплавов тииа АМг5В и АМгбТ, содержащих до 7% магния. Развальцовка трубок, изготовленных также из алюминиевых сплавов в этой решетке может вызвать местный наклеп металла. Последующий длительный нагрев металла решетки в процессе эксплуатации может привести к коррозионному растрескиванию материала. [c.181]

    Кальцит — кристаллический карбонат кальция СаСОз, содержит 56% СаО и 44% СО2. Получают кальцит из известняка, при этом основной примесью является карбонат магния, присутствующий в виде двойной соли Mg Oa-СаСОз — доломита, а также оксиды алюминия и железа. Кальцит обладает малой химической активностью и низкой гидрофильностью. Он способствует предотвращению растрескивания покрытий, особенно в сочетании с алкидными смолами. [c.69]

    Наиболее опасными видами коррозии алюминиевых сплавов являются межкристаллитная коррозия и коррозионное растрескивание. Более высокой стойкостью обладают сплавы, не содержащие в своем составе медь. Промышленный алюминий марок АД и АД1, сплавы с марганцем АМц, сплавы с магнием АМг2, АМгЗ обладают высокой коррозионной стойкостью и могут применяться в морских и тропических условиях. Методы производства полуфабрикатов не оказывают влияния на их коррозионную стойкость. Сварные соединения из этих сплавов по коррозионным свойствам близки к основному металлу. [c.74]

    Коррозионная стойкость более легированных магнием сплавов АМг5, АМгб зависит от методов производства полуфабрикатов и условий эксплуатации. Длительные нагревы при температуре 60— 70 °С могут вызвать появление склонности к межкристаллитной коррозии и коррозионному растрескиванию. Коррозионная стойкость обеспечивается строгим контролем технологии производства полуфабрикатов. Сварные соединения этих сплавов равноценны по стойкости основному металлу. Однако нагрев материала выше 100°С после сварки делает сварные соединения склонными к межкристаллитной коррозии. [c.74]

    Сплавы системы А1—Mg—Си—81 при малом содержании легирующих АД31, АДЗЗ, АД35, АВ обладают удовлетворительной коррозионной стойкостью (меньшей у сплава АВ из-за большего содержания меди). Они нечувствительны к технологическим и эксплуатационным нагревам. Основной металл и сварные соединения не склонны к коррозионно.му растрескиванию. Сплавы повышенной прочности типа 892, содержащие большое количество меди, магния, цинка, обладают более низкой стойкостью. Они чувствительны к термической обработке, нагартовке и технологическим нагревам. [c.74]

    Коррозионное растрескивание в деталях и изделиях, изготовленных из чистого алюминия, не наблюдается. Также крайне редко отмечаются случаи коррозионного растрескивания литейных алюминиевых сплавов. Однако в ряде деформируемых алюминиевых сплавов высокой прочности за счет изменения их химического состава, холодной деформации и термической обработки возникают повреждения, связанные со стресс-коррозией. К таким материалам относятся, в первую очередь, сплавы на основе систем А1—Mg, А1—Си. Системы сплавов А1—Ag, А1—Си—Mg, А1—Mg—Si, Al—Zn, Al—Zn—Mg— u также подвержены коррозионному растрескиванию, однако в меньшей степени, чем системы алюминий— магний или алюминий— медь. Следует отметить, что во всех этих сплавах склонность к коррозионному растрескиванию повьш1ается с повьшхением концентрации легирующих элементов. Введение в сплавы алюминия, хрома, марганца, циркония, титана, ванадия, никеля и лития может понижать склонность алюминиевых. сплавов к коррозионному растрескиванию. Большинство разрушений изделий из алюминиевых сплавов, связанных с коррозионным растрескиванием, происходит в водных средах, однако были отмечены случаи коррозионного растрескивания в тетраоксиде диазота (N2O4), минеральных маслах, спиртах, ртути, гексане. [c.79]

    Важное значение в топливном элементе имеет электролит. При низких температурах (100—240°) электролитом обычно служат растворы кислот и щелочей для высо котемнературных генераторов предполагается применять расплавы солей, например расплавленные карбонаты щелочных металлов, впитанные в окись магния, пригодны при 550—800°. Для температуры выше 1000° используются твердые электролиты, причем ток в таких электролитах должен переноситься только отрицательно заряженными ионами кислорода. Этому требованию удовлетворяет, например, двуокись циркония и некоторые другие сложные системы. Электроды высокотемпературных элементов менее чувствительны к отравлению это позволяет расширить ассортимент материалов для электродов и снижает требования к очистке топлива. Но зато резко увеличивается коррозия электродов и конструктивных узлов топливного элемента. В результате часто наблюдаются изменения структуры электрода и его растрескивание. По этим причинам срок службы высокотемпературных элементов исчисляется лишь месяцами, тогда как низкотемпературные элементы работают годы. [c.102]

    Реакцию проводят часто )з дешевых гессенских тиглях, которые вследствие сильного выделения дыма и возможного растрескивания помещают в песок и после реакции разбивают. Образующийся металл в этом случае сильно загрязнен кремнием. Гораздо лучше тигли с обкладкой из окиси магния. Если важна чистота продукта, то целесообразно поступать по способу, описанному Прандтлем и Блейером [127]. При осуществлении этого метода используют жестяную банку диаметром 12 см и высотой 20—25 см, на дно кеторой вначале утрамбовывают порошок плавикового шпата высотой 3—4 см, затем в банку концентрически вставляют стеклянную или железную трубку диаметром около 45 мм. После этого плавиковый шпат вновь утрамбовывают и трубку осторожно извлекают при вращении. Футерованный таким образом сосуд на несколько сантиметров ниже его верхнего края заполняют плотно утрамбованной реакционной смесью. Для больших количеств веществ аналогичные приспособления изготовляют из кирпичей и снабжают трубой. Не рекомендуется проводить реакции с меньшими количествами, чем указано в методике наиболее удобно брать исходные смеси в количестве нескольких килограммов. В зависимости от интенсивности реакции за один раз могут взаимодействовать 10—20 кг при больших количествах или в случае слишком бурных реакций вначале проводят реакцию только с частью вещества и потом вносят остальное. [c.572]

    На склонность сталей к коррозионному растрескиванию существенно влияет среда, характер и концентрация катионов и анионов раствора (особенно хлоридов), наличие и концентрация кислорода и других окислителей, pH раствора. Увеличение концентрации хлоридов снижает стойкость сталей к коррозионному разрушению в растворах, содержащих хлориды. Было установлено [96, с. 195, с. 208], что аустенитная нержавеющая сталь 1Й18Н10Т в растворах хлористого магния, а также в перегретом и конденсирующемся паре, растрескивается тем быстрее, чем больше концентрация кислорода в растворе. В отсутствие кислорода в этих условиях сталь не подвергалась коррозионному растрескиванию. [c.115]

    Испытания на склонность к коррозионному растрескиванию (КР) в 35 %-ном растворе хлористого магния при 120 °С и в 42 %-ном растворе хлористого магния при 150°С хромомарганцовых сталей показали, что они устойчивы к КР. Но скорость общей коррозии их была значительно выше, чем хромоникелевых сталей. Возможно, их общее активирование в данных условиях является одной из причин отсутствия КР. [c.194]

    Отрицательным свойством многих магниевых конструкционных сплавов является их склонность к местной (язвенной) коррозии и коррозионному растрескиванию. Последнее особенно относится к деформированным материалам повышенной прочности в напряженном состоянии. Обычнокоррозионное растрескивание не происходит в растворах, не активных к магнию, как например, в щелочах, фтористоводородной кислоте, фтористых солях, хромовой кислоте и хроматах, при условии отсутствия ионов хлора. Растягивающие напряжения способствуют появлению коррозионного-растрескивания магниевых сплавов повышенной прочности,, особенно если условия таковы, что пассивное состояние сплава может частично нарушаться в присутствии хлор-ионов (например, при небольшом содержании Na l в дистиллированной воде или в хроматных растворах). Чистый магний и его сплавы с меньшей прочностью, как например, сплав МА—1 с 1,5 % Мп, гораздо менее склонны к коррозионному растрескиванию и могут применяться в деформированном состоянии. [c.275]

    Как и в обычных стеклах, поверхность эмалей значительно изменяется под действием печных газов, которые вызывают растрескивание и другие дефекты, причиняющие много хлопот, ибо эмали становятся грубыми и чешуйчатыми . Стиджер показал, как систематически изменяя химический состав, можно приготовить бессвинцовые глазури, которые не вступают в реакцию с двуокисью серы и другими компонентами печных газов. Особенно следует исключать окислы натрия, лития и бария окиси калия и магния, замещающие известь, повышают устойчивость эмалей. [c.900]


Смотреть страницы где упоминается термин Магний растрескивание: [c.15]    [c.105]    [c.137]    [c.149]    [c.317]    [c.127]    [c.143]    [c.79]    [c.120]    [c.53]    [c.48]    [c.52]    [c.135]    [c.97]    [c.175]    [c.192]    [c.207]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.20 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Магний испытание на коррозионное растрескивание

Магний, коррозионное растрескивание

Магний, коррозионное растрескивание влияние напряжений

Магний, коррозионное растрескивание методы защиты

Магний, коррозионное растрескивание механизм

Магний, коррозионное растрескивание характер

Магний, коррозионное растрескивание чувствительность



© 2025 chem21.info Реклама на сайте