Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорофилл, перенос ДНК

    Предварительная работа. Раствор хлорофилла нужно приготовить заранее. Для этой цели берут примерно 60 г зеленых листьев, мелко нарезают их и тщательно растирают в фарфоровой ступке с метиловым или этиловым спиртом. Для экстракции хлорофилла обычно берут около 600 мл растворителя. Полученный раствор сначала фильтруют через обычный фильтр, а затем переносят его в делительную воронку, куда приливают примерно 10 мл бензина. Смесь в делительной воронке тщательно взбалтывают и дают ей хорошо отстояться. При этом почти весь хлорофилл перейдет в бензиновый слой, который отделяют и используют при постановке опыта. [c.165]


    Комплексообразователем в хлорофилле выступает магний, а в гемоглобине — железо. В одной плоскости с металлом располагаются четыре атома азота органического лиганда. По одну сторону от плоскости железо присоединяет молекулу белка (глобина), а по другую сторону — молекулу кислорода. Такой продукт называется оксигемоглобином. Он образуется в легких, где гемоглобин присоединяет кислород воздуха и далее в виде оксигемоглобина разносится по всему организму. В кровеносных капиллярах происходит отщепление кислорода, который используется для осуществления различных ферментативных процессов окисления органических веществ. Гемоглобин возвращается в легкие и снова участвует в переносе кислорода. Хлорофилл играет важнейшую роль в процессах фотосинтеза, протекающих во всех зеленых растениях. [c.154]

    Аналогичные результаты были получены в реакциях фотопереноса электрона для пигментов (хлорофиллы, феофитин и др.) в присутствии акцепторов (хиноны, метилвиологен, нитросоединения) и доноров (аскорбиновая кислота, фенилгидразин, гидрохинон, Fe +) электрона. Образование ион-радикалов красителей при фотохимических окислительно-восстановительных реакциях протекает через ряд промежуточных стадий, включающих образование возбужденного комплекса донорно-акцепторного типа и ион-ра-дикальных пар. Донорно-акцепторный комплекс с триплетным состоянием красителя был обнаружен в реакции фотоокисления хлорофилла я-бензохиноном в толуоле. Вероятность дезактивации эксиплекса в направлении образования ион-радикальной пары зависит от степени переноса заряда внутри возбужденного комплекса. В свою очередь степень переноса заряда определяется сродством к электрону и потенциалом ионизации как триплетной молекулы красителя, так и невозбужденной молекулы донора или акцептора электрона. [c.178]

    Ж. Неправильно. При возбуждении электрона в хлорофилле переносится его энергия-но не сам электрон-от одной молекулы хлорофилла к другой с помощью резонансного механизма. [c.347]

    Мембранные системы в хлоропласте состоят из ряда уплощенных мешков, которые наслаиваются друг на друга в виде стопок, образуя так называемую грану (рис. 8.8). Электроны могут направленно переноситься с одной стороны мембраны на другую так, что кислород выделяется внутри, а процесс восстановления происходит снаружи. Число молекул хлорофилла в каждом хлоропласте прямо зависит от величины поверхности мембран и составляет приблизительно 10 хлорофилльных молекул на хлоропласт. По-видимому, молекулы пигментов (преимущественно хлорофилла) должны распределяться в виде монослоев по поверхности мембран, создавая максимальную площадь поверхности пигмента для поглощения света и переноса энергии к особым участкам мембраны. Эксперименты с импульсным освещением показали, что скорость выделения кислорода у растений возрастает с ростом интенсивности света до определенного предела, соответствующего возбуждению одной из каждых 300 молекул пигмента. Однако этот результат не означает, что другие пигментные молекулы всегда неактивны, потому что квантовые выходы, измеренные при низких [c.232]


    Ионообменная хроматография — один из видов хроматографического анализа, основы которого были созданы в 1903— 1906 гг. Цветом первоначально с целью разделения пигментов группы хлорофилла. Современная хроматография — это метод разделения веществ (молекул или ионов), основанный на различиях в скорости переноса растворенных веществ в системе двух фаз, одна из которых подвижна компоненты перемещаются через систему только находясь в подвижной фазе, в направлении ее движения. Компоненты, распределяющиеся предпочтительно в неподвижной фазе, двигаются медленнее компонентов, находящихся в основном в подвижной фазе. Таким образом, различия в равновесном распределении компонентов между двумя фазами и в кинетике обмена обуславливают различия в линейных скоростях движения компонентов и в конечном счете ведут к их разделению. [c.686]

    Ассимиляция солнечной энергии, т.е. превращение световой энергии в химическую, стартует с поглощения кванта света светособирающими молекулами (антеннами) на поверхности мембраны. Электронное возбуждение безизлучательно передается специальным молекулам внутри мембраны - димерам хлорофилла. Эти димеры хлорофилла входят в состав молекулярных образований, которые называются РЦ фотосинтеза. РЦ фотосинтеза - это достаточно жесткий молекулярный комплекс (молекулярный аппарат). Далее в РЦ происходит процесс разделения зарядов возбужденный димер хлорофилла отдает электрон первичному акцептору электрона. Этот процесс происходит в пикосекундном диапазоне времен. Например, в РЦ пурпурной бактерии в качестве первичного акцептора выступает бактериофеофитин, электрон живет сотни пикосекунд на фео-фитине и переносится на первичный хинон Рд. [c.106]

    В качестве примера можно назвать гемоглобин, представляющий собой комплексное соединение железа, благодаря которому осуш,ествляется перенос кислорода из легких к клеткам ткани хлорофилл — комплексное соединение магния — ответственный за фотосинтез в растениях. [c.367]

    В настоящее время функция хлорофилла в фотосинтезе ясна под действием света он может вызывать электронный перенос и осуществлять окислительно-восстановительные изме- [c.235]

    Эта схема первых стадий реакции приведена на рис. 187. Молекула хлорофилла а, получив энергию от окружающих молекул пигментов, взаимодействует с О и А, находящихся в тесном соприкосновении с нею в мембране хлоропласта. При отдаче энергии хлорофиллом идет перенос электронов [c.344]

    Исследователи уделяют большое внимание тому, как сопрягается синтез АТФ с фотосинтетическим переносом электронов, т. е. какими путями запасается в аденозинтрифосфате известная часть энергии, поглощаемой при действии света на хлорофилл. Синтез АТФ, как видно на рис. 189, происходит при переносе электронов от цитохрома типа Ь к цитохрому типа с, а также при обратном переходе от FRS к ФС1. [c.347]

    Теперь известно, что для фиксации молекул СОг в виде углевода надо затратить примерно 10 квантов красного цвета с энергией кванта 40 ккал моль на 1 квант фиксируется 0,1 моль Og. На перенос одного электрона требуется 1 квант. Разложение молекулы Н О связано с двумя одноэлектронными переносами при участии фотовозбужденного хлорофилла. [c.349]

    Нередко электронное возбуждение одного хромофора вызывает флуоресценцию другого хромофора, расположенного поблизости. Так, например, возбуждение молекул красителя, образующих монослой, приводит к флуоресценции слоя другого красителя, находящегося от первого на расстоянии 5 нм. Возбуждение остатков тирозина в белках может вызвать флуоресценцию триптофана, а возбуждение триптофана— флуоресценцию красителя, связанного с поверхностью молекулы белка, или флуоресценцию связанного кофермента [57]. Такого рода резонансный перенос энергии характерен для тех случаев, когда спектр флуоресценции одной молекулы перекрывается со спектром поглощения другой. При этом реального испускания и поглощения света не происходит, а имеет место безызлучательный перенос энергии. Резонансный перенос энергии имеет большое биологическое значение для фотосинтеза. Поскольку молекула с е = 3-10 при воздействии прямого солнечного света поглощает около 12 квантов света в секунду, моно-молекулярный слой хлорофилла будет поглощать всего 1 % общего числа квантов, падающих на поверхность листа [63]. По этой причине молекулы хлорофилла располагаются в виде многочисленных тонких слоев внутри хлоропластов. Однако непосредственно в реакционных центрах, где идут фотохимические процессы, находится лишь небольшое число специализированных молекул хлорофилла. Остальные молекулы поглощают свет и передают энергию в реакционный центр небольшими порциями. [c.31]

    Запасание и использование солнечного излучения зависит от наличия в растениях хлорофилла. На рис. 8.7 показана структурная формула наиболее широко распространенного хлорофилла о. Резонанс сопряженной системы приводит к оптическому поглощению в видимой области спектра на длинах волн, соответствующих максимальной солнечной интенсивности на уровне моря. В то же время свойственная порфнриновой структуре стабильность гарантирует, что поглощение излучения будет сопровождаться процессами переноса энергии или излучения, а не диссоциацией хлорофилла. Хлорофилл является особо эффективным сенсибилизатором благодаря способности поглощать энергию света и передавать ее от одной молекулы к другой до тех пор, пока не появятся условия, подходящие для сенсибилизируемой реакции. В органических растворах выход флуоресценции составляет примерно 0,3 (хотя в естественных условиях он значительно меньше), что является дополнительным свидетельством стабильности молекулы. [c.230]


    Наконец, ионы металлов играют очень важную роль агентов транспорта электронов [37], в особенности в одноэлектронных переносах, где обычно используются окислительно-восстановительные системы типа Fe (И) Fe (П1) и Си (I) 5 Си (И). Окислительно-восстановительный потенциал является чувствительной функцией связывания лигандов. Во многих случаях (гемоглобин, цитохромы, хлорофилл, витамин В,2) металл комплексуется не только с белком, но и с макроциклическими тетрадентатными лигандами (например, порфирин в геме), которые оставляют свободным только одно координационное место с весьма специфическими и тщательно контролируемыми свойствами [42]. [c.476]

    Обычно не удается наблюдать накопления фотовосстановленной формы хлорофилла из-за ее быстрой реакции с акцепторами электронов. В модельных опытах накопление фотовосстановленной формы пигмента осуществляется лишь после израсходования всего количества акцептора электронов (в условиях, когда донор электронов еще имеется). Последовательность реакции фотосенсибилизированного хлорофиллом переноса электронов от одного соединения (донора ДН2) к другому (акцептору А) представлена ниже  [c.154]

    Пикосекундные кинетические исследования [94] обесцвечивания бактериохлорофилла, содержащегося в изолированных реакционных центрах, показали, что начальное фотохимическое окисление хлорофилла в форму Хл+ происходит в течение 10 ° с (0,1 не). В соответствии с этим время жизни т возбужденного состояния хлорофилла в фотосистеме I хлоропластов оценивается в 0,13 не (сравните с временем жизи То для свободного хлорофилла, равным 19 не) [95]. Низкое значение т в случае хлоропластов обусловлено быстрым переносом электрона с хлорофилла на акцептор. Время жизни возбужденного состояния хлорофилла в фотосистеме II примерно в 10 раз больше (1,5 нс) > [95]. [c.47]

    Поскольку энергия фотоактивированной молекулы хлорофилла не находится в каком-либо соответствии с квантами энергии, которые могут воспринять донор и акцептор водорода, то сенсибилизация хлорофиллом переноса водорода безусловно не заключается в передаче кванта эгюргии от хлорофилла этим участникам. [c.372]

    Важным направлением биоэлектрохимических исследований является изучение свойств мембран с встроенными ферментными системами. Так, предприняты попытки встраивания в бислойные фосфолипидные мембраны компонентов ферментных систем, присутствующих во внутренней мембране митохондрий (никотинамид — аденин — динуклеотида (ЫАОН), флавинмононуклеотида и коэнзима Р,), а также хлорофилла. На таких мембранах при наличии в водном растворе окис-лительно-восстановительных систем генерируется мембранный потенциал, вызванный протеканием окислительно-восстановительных реакций на границе мембрана — электролит. В определенных условиях мембраны оказываются проницаемыми для электронов или протонов. Эти опыты важны для понимания механизма превращения энергии и переноса электронов в живых организмах. [c.141]

    Особое место так называемых ароматических тетрапиррольных соединений - порфиринов (НгП) и их аналогов - среди огромного количества биологически активных веществ обеспечивается их участием в фундаментальных процессах жизнедеятельности, таких как фотосинтез (хлорофиллы и бактериохлорофиллы), перенос молекулярного кислорода (гемы), реакции изомеризации и перенос метильных групп (корриноиды), восстановление сульфита и нитрита (сирогем), образование метана у бактерий (фактор р4зо) и ряд других, а также их биосинтезом и широким распространением в природе. Тетрапирролы с открытой цепью (билины и фикобилины) являются продуктами распада гема в животных организмах. [c.326]

    В определенных условиях хлорофилл может фотовосстанавливаться предполагают, что первым фотохимическим актом этого процесса является перенос электрона от одной молекулы хлорофилла на другую в пределах димера или (в бактериях) от молекулы бактериохлорофилла на бактериофеофитин. [c.48]

    Существует мнение, что перенос протонов через мембраны тилакоидов сопряжен с циклическим окислением и восстановлением пластохинонов (аналогично тому, как это происходит с убихиноном в митохондриях) и что фотосистема II локализована внутри тилакоидов. В таком случае после расщепления молекулы воды два протона (по одному на электрон) останутся внутри тилакоида, а электроны будут выведены под действием света через двойной липндный слой к акцептору Q, расположенному снаружи. Аналогичным образом можно предположить,, что хлорофилл в фотосистеме II локализован с внутренней стороны двойного слоя, а акцептор Z — снаружи (рис. 13-18). Поскольку в ходе происходящего с наружной стороны восстановления NAD+ в NADH высвобождается протон, в сумме происходит перекачивание полутора про гонов на каждый электрон, проходящий через 2-систему [107, 109]. Согласно химио-оомотической гипотезе (гл. 10, разд. Д,9, в), источником свободной энергии, необходимой для синтеза АТР, является именно Перенос протонов, приводящий к появлению градиента pH и мембранного потенциала. [c.50]

    Исходными субстратами в биосинтезе порфирнновых соед. служат сукцинат и глицин. Порфириновые соед. выполняют в О.в. важные ф-ции, принимая участие в окислит.-восстановит. процессах. В частности, в составе гема в гемоглобине порфириновое кольцо участвует в переносе О2 в крови. Порфириновое кольцо входит в состав цитохромов и хлорофиллов. Катаболизм порфиринов в животном организме состоит в раскрытии и частичной деградации пор-фиринового кольца. Продукты катаболизма в виде окраш. соед. (биливердина, билирубина и др.) наряду с продуктами частичного окисления стероидов (холевыми к-тами) выводятся через желчные протоки в кишечник. [c.315]

    Различают четыре вида органических П. 1) низкомо-лекуляриые соед. с коидеисир. ароматич. ядрами нафталин, антрацен, пирен, перилен и т. п. и их производные 2) соед., содержащие помимо конденсированных ароматич. ядер открытоцепные участки (красители и пигменты типа хлорофилла, Р-каротина) 3) полимерные материалы (полиэтилен, биополимеры) 4) молекулярные комплексы с переносом заряда, в к-рых проводимость осуществляется путем перехода электрона от молекулы-донора к молекуле-акцептору (комплексы ароматич. соед, с галогенами). Мн. органические П, являются биологически активными в-вами, что, по-видимому, неразрывно связано с особенностями их электрич. проводимости. [c.58]

    ФОТОСЙНТЕЗ, образование зелеными растениями и нек-рыми бактериями орг. в-в с использованием энергии солнечного света. Происходит при участии пигментов (у растений хлорофиллов). В основе Ф. лежат окислит.-восстановит. р-ции, в к-рых электроны переносятся от донора (напр., Н2О, H2S) к акцептору (СО2) с образованием восстановленных соед. (углеводов) и выделением Oj (если донор электронов Н2О), S (если донор электронов, напр., H2S) и др. [c.175]

    Не содержащий металла, незамещенный тетрапиррольный макроцикл, составляющий основу хлорофилла и гема крови, называют порфцном, а не содержащий иона двухвалентного железа гем — протопорфирином IX. Кроме того, гем входит в состав гидроперок-сидаз и цитохромов — восстановительно-окислительных ферментов, обеспечивающих перенос электронов. В качестве активного центра этих ферментов гем играет в них роль простетической группы. [c.217]

    Функционирование многих фермеитов связано с участием Mg +, причем самую обширную самостоятельную группу представляют фосфотрансферазы (гл. 3, разд. Б,5), для которых Mg АТР может рассматриваться как субстрат. К числу Mg +-зависимых ферментов принадлежат фосфатазы и другие ферменты, катализирующие перенос фосфатных групп. Особая функция магния связана с его участием в фотосинтезе в качестве компонента хлорофилла. [c.130]

Таблица 5.7. Стандартные изменения энтальпии при растворении и переносе из бензола комплексов группы протопорфирина я хлорофилла в координирующие и некоординирующие органические растворители, кДж моль Таблица 5.7. <a href="/info/1501336">Стандартные изменения энтальпии</a> при растворении и переносе из <a href="/info/27424">бензола комплексов</a> группы протопорфирина я хлорофилла в координирующие и <a href="/info/610675">некоординирующие</a> <a href="/info/8337">органические растворители</a>, кДж моль

Смотреть страницы где упоминается термин Хлорофилл, перенос ДНК: [c.82]    [c.160]    [c.178]    [c.163]    [c.223]    [c.160]    [c.131]    [c.231]    [c.234]    [c.164]    [c.352]    [c.306]    [c.12]    [c.331]    [c.624]    [c.177]    [c.177]    [c.349]    [c.87]    [c.278]    [c.1056]    [c.668]   
Генетика человека Т.3 (1990) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорофилл

Хлорофилл хлорофилл



© 2024 chem21.info Реклама на сайте