Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конкурентные субстраты

    Если основной граф состоит из двух или большего числа обособленных частей, соприкасающихся в точках, соответствующих одной, общей для обеих частей форме, то удобно анализировать эти части порознь. В качестве простого примера можно рассмотреть случай конкурентных субстратов, когда один фермент катализирует одновременно две реакции с различными субстратами  [c.67]


    На рис. 39, а дана найденная на опыте зависимость левой части уравнения (4.17) от концентрации и природы соли. Для сравнения на рис. 39, б приведено изменение с концентрацией той или другой соли коэффициентов активности бензола и его производных. Эти соединения следует рассматривать как структурные аналоги боковой цепи в молекуле субстрата (они же являются классическими конкурентными ингибиторами). При сравнении рис. 39, а н б видно, что эффективность образования комплекса Михаэлиса изменяется с ионной силой при [c.144]

    Из выражения (5.45) видно, что в случае конкурентного типа ингибирования показатель Iso не может быть принят за меру ингибирующей способности эффектора при произвольной концентрации субстрата. [c.101]

    По отношению к нуклеотидному субстрату кофермент А является конкурентным ингибитором с константой ингибирования, [c.104]

    Зависимость концентраций субстрата (в усл. ед.), определяемых в процессе ферментативной реакции через одинаковые промежутки времени, от концентрации конкурентного ингибитора. Условия опыта pH 7,8 25° С ионная сила 0,1 М (КС1) [c.173]

    Найти выражение для скорости двухсубстратной ферментативной реакции, в которой ингибитор 1 является конкурентным ингибитором субстрата Зг, а ингибитор 1а конкурентным ингибитором субстрата З] [6] [c.295]

    Обратимо реагирующие ингибиторы. Прямое конкурентное ингибирование— ингибитор конкурирует с субстратом за активный центр фермента  [c.191]

    Когда субстрат фермента Е., одновременно конкурентно ингиби- [c.197]

    Когда субстрат фермента Ез одновременно конкурентно ингибирует фермент Е , величины скоростей превращения субстратов соответственно равны [c.251]

    Общее свойство гликозидаз — довольно высокое сродство их активных центров к отщепляемому моносахаридному остатку. Как правило, величина константы ингибирования для моносахаридов — ПродуКТОВ ферментативного гидролиза — близка к величине константы Михаэлиса для соответствующего субстрата. Аналоги или некоторые производные таких моносахаридов являются, по-видимому, наиболее эффективными конкурентными ингибиторами гликозидаз, известными к настоящему времени. В качестве приме- [c.28]

    Накопленный к настоящему времени опыт теоретического рассмотрения кинетики ферментативной деструкции полимеров позволяет утверждать, что иа экспериментально определяемую величину константы Михаэлиса должны влиять гетерогенность состава полимерного субстрата (по типу мономерных звеньев), различия в типах статистического распределения полимеров по степени полимеризации, конкурентное самоингибирование субстратом (или его фрагментами), множественная атака. Конкурентное самоингибирование уменьшает величину эффективной константы Михаэлиса. Напротив, возрастание степени множественной атаки (если последняя вообще имеет место) приводит к возрас- [c.135]


    Перегруппировка идет с высокими выходами и ее можно провести с ароматическими циклами, содержащими различные заместители [205]. Чаще всего в реакцию вводят субстраты, имеющие три метильные группы у азота, но можно использовать и другие группы, однако при наличии р-водорода конкурирующей реакцией часто становится элиминирование по Гофману (т. 4, реакция 17-6). Если три группы у азота разные, могут получаться конкурентные продукты, например [106]  [c.41]

    Однако для этих субстратов наблюдалось много аномальных результатов. Бензильное положение не всегда оказывается наиболее предпочтительным положением атаки. Единственное, что можно сказать с определенностью, это то, что ароматические атомы водорода редко отрываются, если в субстрате есть алифатические атомы водорода, которые и вступают в конкурентную реакцию (из табл. 5.3 в гл. 5 т. 1 видно, что величина D для связи Ph—Н выше, чем для связи алкил—Н). Для бензильных радикалов разработана шкала о (аналогичная шкалам сг, а+ и а , обсуждавшимся в т. 1, гл. 9) [42]. [c.64]

    Первая закономерность связана с применимостью правила Траубе к процессам адсорбции из растворов. Использование уравнения Лэнгмюра, допустимое для начальных участков изотерм, показывает во многих случаях увеличение К в 3—3,5 раза при удлинении цепи на одно звено. Адсорбционная способность возрастает в гомологическом ряду и конкурентная адсорбция идет в пользу адсорбента с большим молекулярным весом. Так, во многих ферментативных процессах (например, при расщеплении пептонов пепсином) продукты распада оказываются менее поверх-ностно-активными, чем исходные вещества и уступают место в поверхностном слое все новым и новым макромолекулам субстрата на поверхности фермента. [c.174]

    Описанный тип ингибирования обычно называют конкурентным ингибированием, так как при этом имеет место конкуренция между молекулами ингибитора и субстрата за присоединение к активному центру фермента. Известны и другие типы ингибирования ферментативных реакций, рассмотрение которых выходит за рамки этого курса. [c.333]

    Бвнзгидроксамсвая кислота является конкурентным субстратом пе-роксидазы хрена кислота бистро метаболизируется в присутствии ин-тактной перонсидазы с накоплением нитрита, причем в низких концентрациях она не ингибирует, а стимулирует окисление ферроцианида [ 55 ]. [c.108]

    Явление конкурентного ингибирования, которое наблюдается в гетерогенном катализе, можно также рассмотреть на примере ферментативного катализа. Предполагается, что ингибитор 3 сильно сорбируется на тех же самых активных местах Е, что и субстрат 3, и, таким образом, замедляет реакцию за счет понижения активных мест. Если добавить к написанной выше схеме [см. уравнение (XVII.10.1)] стадию ингибирования [c.562]

    Теперь, разобравшись с механизмом алкилирования в условиях МФК, перейдем к рассмотрению механизма генерирования дигалокарбенов. Мы тщательно изучим все факты, относящиеся к генерированию дихлоркарбена, однако полученные выводы равным образом будут применимы ко всем карбенам, образующимся при межфазных реакциях. Проведение конкурентных реакций показало, что дихлоркарбен, генерируемый при МФК, идентичен дихлоркарбену, получаемому другими методами [2, 29], и не является карбеноидом. Кроме того, можно показать, что в условиях МФК карбен СХ может, обменивая галогены, превращаться в СХг и С 2. Надо добавить, что в отличие от всех других методов генерирования дигалокарбенов при МФК реакция проходит при комнатной температуре как необратимый быстрый одностадийный процесс. В то врем как смесь трег-бутилата калия с хлороформом реагирует при —20 °С независимо от присутствия или отсутствия субстрата, а Ь1СС1з распадается обратимо даже при такой низкой температуре, как —72 °С, реакционная смесь, используемая в МФК — хлороформ/конц. МаОН/катализатор, — в том случае, когда отсутствует реактант, взаимодействующий с карбеном, сохраняет свою способность давать СС12 даже при комнатной температуре в течение нескольких дней. Поскольку между хлороформом и концентрированным раствором ЫаОО/ОгО наблюдается очень, быстрый Н/О-обмен, который происходит и без всякого катализатора, то первой стадией должно быть депротонирование на границе раздела фаз. Предположительно при этом образуется двойной слой того же типа, что и обсуждавшийся выше  [c.61]

    Этот постулат получил экспериментальные доказательства при изучении четырех видов реакций, а именно окисления ацеталей озоном, кислотного гидролиза циклических ортоэфиров, конкурентного углеродно-кислородного обмена и гидролиза эфиров с использованием 0-метки и, наконец, основного гидролиза Ы,Ы-диалкилированных солей иминоэфиров основаниями. Рассмотрим кратко результаты трех последних экспериментов. Затем мы постараемся использовать эту концепцию при рассмотрении гидролиза эфирных и амндных субстратов серниовыми нро-теазами. [c.244]

    Обнаружено, что оба соединения нереакционносиособны, но они оказались хорошими конкурентными ингибиторами специфического субстрата N-A -L-Pl e-OMe. Это показывает, что они [c.253]

    Если с субстратом по механизму 5n2 конкурентно реагируют два или несколько нуклеофилов, то при их одинаковой исходной концентрации можно ожидать образования в преобладающе количестве продукта взаимодействия с нуклеофилом, обладающим большей реакционной способностью. [c.102]


    Ароматические обратимые конкурентные ингибиторы. Яркие корреляции между ферментативным (4.10) и модельным (4.11) процессами обнаруживают данные, полученные для производных бензола [83, 84]. Эти соединения можно рассматривать как аналоги боковой группы R в молекуле специфических субстратов (фенилаланин, тирозин). В ряду монозамещенных бензолов отчетливо выявляются две группы ингибиторов (рис. 36). Если ввести в молекулу бензола (точка /) гидрофобный заместитель (точки 2—7), то это приводит к резкому усилению ингибирующих свойств данного соединения. Поскольку наклон соответствующей прямой IgKi—lgP равен единице, т. е. фактически имеем [c.139]

Рис. 41. Влияние высоких концентраций субстрата (этилацетурат, ЭА) на сорбцию химотрипсином обратимого конкурентного ингибитора К-ацетил-В-триптофана а — отношение растворимостей ами- Рис. 41. Влияние <a href="/info/1320639">высоких концентраций субстрата</a> (этилацетурат, ЭА) на сорбцию химотрипсином <a href="/info/1623862">обратимого конкурентного ингибитора</a> К-ацетил-В-триптофана а — отношение растворимостей ами-
    При малых концентрациях субстрата (этилацетурат) N-aцeтил-D-триптофан — это конкурентный ингибитор реакции ферментативного гидролиза  [c.146]

Рис. 74. Применение метода Диксона для определения константы конкурентного ингибирования коферментом А реакции фосфотрансацетили-рования, катализируемой фосфат-ацетилтрансферазой [31], если концентрация неорганического субстрата (фосфата), мМ Рис. 74. <a href="/info/24235">Применение метода</a> Диксона для <a href="/info/829285">определения константы конкурентного</a> ингибирования коферментом А реакции фосфотрансацетили-рования, катализируемой <a href="/info/612132">фосфат-ацетилтрансферазой</a> [31], если <a href="/info/66688">концентрация неорганического</a> субстрата (фосфата), мМ
    Если в препарате фермента содержйтся примесь конкурентного ингибитора, то схему ферментативной реакции при равновесных условиях образования комплексов фермент — субстрат и фермент — ингибитор следует записать в виде [c.241]

Рис. 103. Применение метода Фостера— Ниманна для определения константы конкурентного ингибирования пенициллинамидазы продуктами ферментативного гидролиза бензилпенициллина (по данным А. А. Клёсова и В. К. Швядаса), если начальные концентрации субстрата (мМ) Рис. 103. <a href="/info/24235">Применение метода</a> Фостера— Ниманна для <a href="/info/829285">определения константы конкурентного</a> ингибирования <a href="/info/327591">пенициллинамидазы</a> <a href="/info/1016439">продуктами ферментативного</a> гидролиза бензилпенициллина (по данным А. А. Клёсова и В. К. Швядаса), если <a href="/info/26133">начальные концентрации</a> субстрата (мМ)
Рис. 46. Применение координат Диксона для определения константы конкурентного ингибирования коферментом А реакции фосфотрансацетилирования, катализируемой фосфат-ацетилтрансферазой. Концентрации нуклеотидного субстрата (Ацетил-СоА) (а) 1,25-10-< М (б)—8.5Х X 10-5 м (в) —3,5-10-5 м Рис. 46. <a href="/info/1590510">Применение координат</a> Диксона для <a href="/info/829285">определения константы конкурентного</a> ингибирования коферментом А реакции фосфотрансацетилирования, катализируемой <a href="/info/612132">фосфат-ацетилтрансферазой</a>. Концентрации нуклеотидного субстрата (Ацетил-СоА) (а) 1,25-10-< М (б)—8.5Х X 10-5 м (в) —3,5-10-5 м
    В таблице 3 приведены кинетические данные для гидролиза этилового эфира К-ацетил-Ь-тирозина, катализируемого а-химотрипоином в присутствии конкурентного ингибитора, метилового эфира М-ацетил-П-фенилаланил-Ь-аланина. Определить значение константы ингибирования фермента ОО-дипептидом, если начальная концентрация субстрата и начальное время реакции неизвестны. Определение концентрации непрореагировавшего субстрата в ходе ферментативной реакции проводилось в каждом случае через равные промежутки времени. [c.172]

    Кинетические параметры гидролиза бензилпенициллина до 6-аминопенициллановой кислоты (6-АПК) под действием иммобилизованной пенициллинамидазы при 40° С равны йкат=15 сек- , Ят(каж)=3,1 10- м. Константа инактивации пенициллинамидазы в условиях проведения реакции равна 10 сек , причем связывание с ферментом субстрата или продуктов реакции не влияет на скорость инактивации фермента. Рассчитать, какое количество 6-АПК (мол. вес 217) можно получить с помощью иммобилизованной пенициллинамидазы в периодически действующем реакторе объемом 100 л (начальная концентрация активного фермента равна 3-10 М, начальная концентрация субстрата равна 1,0 М), если степень конверсии субстрата в каждом реакционном цикле должна составлять 99%. В расчетах учесть, что константа конкурентного ингибирования пенициллинамидазы вторым продуктом реакции, фенилуксусной кислотой, равна 2,8-10 М. [c.176]

    Как обсуждалось выше, непродуктивное связывание субстрата с ферментом фактически играет роль конкурентного самоингиби- [c.114]

    Следовательно, та часть оригинальной реакции, которая приводит к сохранению конфигурации, представляет собой две последовательные реакции Sn2, а не результат какого-либо пограничного поведения [61]. В другом исследовании Стрейтвизер, Уэлш и Вольф показали, что рацемизация, сопровождающая инверсию при ацетолизе оптически активного 2-октилтозилата, является результатом реакций иных, чем действительное сольволи-тическое замещение, а именно — реакции 2-октилацетата с образующейся п-толуолсульфоновой кислотой, присоединения уксусной кислоты к 2-октену (получающемуся из субстрата по конкурентной реакции элиминирования) и рацемизации исходного тозилата [62]. Само нуклеофильное замещение происходит практически с полным обращением конфигурации. [c.28]

    Обычно в реакцию вводят субстраты, в которых две группы Z соединены с группой СНг. В таких случаях алкилирование можно провести дважды вначале основание отщепляет протон, затем RX алкилирует образующийся ион, после чего протон отщепляется от Z HRZ и, наконец, происходит алкилирование получающегося енолят-иона тем же или другим RX. Реакция успешно идет с первичными и вторичными алкильными, аллильными (здесь возможна аллильная перегруппировка) и бензильными RX, но не идет с третичными алкилгалогенидами, так как в условиях проведения этой реакции происходит элиминирование (см., однако, ниже). RX может содержать различные функциональные группы, устойчивые к действию основания. Среди побочных реакций, осложняющих этот процесс, уже упоминавшееся конкурентное 0-алкилирование, элиминирование (если енолят-ион сам представляет собой достаточно сильное основание) и дмалкилирование. Один из способов подавления как О-алкилирования, так и диалкилирования состоит в прове-денпи реакции в присутствии фторида тетраалкиламмония. [1129]. [c.202]

    Реакция сульфирования находит очень широкое применение, и в нее были введены многие типы ароматических углеводородов (включая конденсированные циклические системы), арилгалогениды, простые ароматические эфиры, карбоновые кислоты, ацилированные амины, кетоны, нитросоединения и сульфокислоты [139]. Фенолы также можно успешно сульфировать, но реакция может осложняться конкурентной атакой по кислороду. Для сульфирования часто применяют концентрированную серную кислоту, но можно использовать также дымящую серную кислоту, 50з, С18020Н и другие реагенты. Как и в случае нитрования (реакция 11-2), имеется широкий ассортимент реагентов различной реакционной способности для проведения реакции как с высокоактивными, так и с инертными субстратами. Поскольку эта реакция обратима (см. реакцию 11-44), то для доведения ее до конца может потребоваться внешнее воздействие. Однако при низких температурах обратная реакция идет очень медленно, поэтому прямое взаимодействие оказывается практически необратимым [140]. Серный ангидрид реагирует значительно быстрее, чем серная кислота,— с бензолом взаимодействие идет практически мгновенно. Побочно часто образуются сульфоны. При введении в реакцию сульфирования субстратов, содержащих в кольце четыре или пять алкильных заместителей или атомов галогена, обычно происходят перегруппировки (см. реакцию 11-42). [c.341]

    В процессе превращения субстрата в молекулу 6 лимитирующей стадией может быть либо отрыв протона, либо последующая потеря галогенид-иона. Необычная последовательность реакционной способности уходящих групп (Вг>1>С1) объясняется тем, что меняется стадия, определяющая скорость. Когда уходящей группой является Вг или I, лимитирующей стадией будет отрыв протона, и порядок скорости для этой стадии соответствует последовательности Р>С1>Вг>1. Когда же уходящей группой является С1 или Р, лимитирующим становится расщепление связи С—X, и порядок скорости для этой стадии соответствует последовательности 1>Вг>С1>Р. Подтверждение последнему факту было найдено при изучении конкурентных реакций. жега-Дигалогенобензолы с двумя различными атомами галогена обрабатывали ЫНг [29]. В таких соединениях наиболее кислый водород расположен между двумя атомами галогенов когда он отрывается, остающийся анион может терять любой атом галогена. Поэтому, изучая, какой из атомов галогена отщепляется предпочтительно, можно получить [c.11]

    При обработке диазониевых солей нитритом натрия в присутствии иона меди(1) с хорошим выходом образуются иитро-соединепия реакция идет только в нейтральной или щелочной среде. Эта реакция была открыта Зандмейером, как и реакции 14-24 и 14-27, но в отличие от последних реакцию 14-25 обычно не называют реакцией Зандмейера. Для предотвращения конкурентной реакции с хлорид-иоиом в реакции часто используется анион BF4 . Механизм ее, по-видимому, аналогичен механизму реакции 14-24 [313]. При наличии в субстрате электроноакцепторных групп катализатор не требуется и под действием одного МаЫОг с высоким выходом образуются ароматические нитросоединения [314]. [c.104]

    Однако сравнение скоростей гидрирования отдельно взятых олефинов показывает, что степень замещения в этом случае влияет существенно меньше, чем при конкурентном гидрировании пар соединений. Так, время полуреакции (гидрирования 50 % субстрата) для алкенов 5 6 разного строения различается не более чем в 45 раз. Длина цепи, х вязанной с этиленовой группой, и ее развет-вленность мало отражаются на скорости гидрирования (выражена как относительное время полуреакции)  [c.47]


Смотреть страницы где упоминается термин Конкурентные субстраты: [c.365]    [c.118]    [c.563]    [c.236]    [c.302]    [c.147]    [c.293]    [c.338]    [c.60]    [c.182]   
Основы ферментативной кинетики (1979) -- [ c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Субстрат



© 2025 chem21.info Реклама на сайте