Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства азота при разных температурах

    В первом способе плазма образуется при пропускании рабочего плазмообразующего вещества через электрическую дугу. Используемое в дуге напряжение невелико (40— 100 В), плотность тока достаточно велика (>1 А). В качестве плазмообразующих газов используются обычно азот, водород, гелий, аргон. Изменяя газ, можно изменять химические свойства среды плазмы (окислительные, нейтральные, восстановительные). Плазма может иметь разную температуру (от 5000 до 50000 °С). Соответственно степень ионизации может изменяться от 1 до 100%. Дуго- [c.678]


Таблица 14 Свойства азота при разных температурах Таблица 14 <a href="/info/149414">Свойства азота</a> при разных температурах
    Интересно рассмотреть полупроводниковые свойства этих окислов. В первой группе все окислы представляют собой полу проводники /7-типа. Во второй группе MgO, aO и СеОг представляют, как известно, ниже 550° изоляторы, в то время как СиО — собственный полупроводник. Третью группу составляют полупроводники п-типа, за исключением окисла СггОз, который, будучи дырочным, все же очень близок к собственным полупроводникам. Существование таких классов катализаторов, активных при разных температурах, указывает на важную роль электронов в процессе разложения закиси азота — в соответствии с предложенным Вагнером механизмом реакции. [c.44]

    Газовые смеси разделяют, используя различия компонентов смеси в температурах кипения, растворимости и других свойствах. Разные температуры кипения дают возможность при сжатии и сильном охлаждении последовательно конденсировать отдельные компоненты. Так, из коксового газа, содержащего 53 —60% Нг, получают газообразный водород, последовательно конденсируя и отделяя содержащиеся в газе углеводороды, оксид углерода, кислород и азот. В других случаях газовую смесь сжижают и затем разделяют на компоненты перегонкой в ректификационных колоннах. [c.29]

    ВОДОРОДНАЯ СВЯЗЬ — соединение посредством атома водорода двух атомов разных молекул или одной молекулы. В. с. возникает между атомами кислорода, азота, фтора, реже—хлора, серы и др. С наличием В. с. связаны такие свойства веществ, как ассоциация молекул и обусловленное ею повы-ш епие температуры плавления и кипения, особенности в колебательных и электронных спектрах, аномалии в растворимости и др. (см. Вода). Благодаря [c.57]

    Эти обратимые реакции представляют интерес по двум независимым причинам. Синтез аммиака чрезвычайно важен с промышленной точки зрения, и большое число проведенных в этой области исследований дало вполне удовлетворительную картину его механизма и свойств катализаторов [53—55]. Кроме того, эти реакции исследовались во многих лабораториях в широком интервале давлений и температур, и стало ясным, что в различных условиях действуют разные механизмы. По-видимому, при очень высоких температурах разложение протекает по механизму Лэнгмюра — Хиншельвуда при более низких температурах и более высоких давлениях скорость-определяющей стадией, вероятно, является десорбция азота. В синтезе аммиака при высоких давлениях и умеренных температурах лимитирующую скорость стадию представляет адсорбция азота. [c.291]


    Итак, можно констатировать, что данные по влиянию предварительной термической обработки в атмосфере азота и кислорода на каталитические свойства платиновой черни имеют принципиальное сходство. Различие в поведении катализатора при спекании в атмосфере разных газов обусловлено тем, что среда, в которой производится термическая обработка, оказывает существенное влияние на скорость и на температуру начала рекристаллизации. [c.174]

    Различные формы углерода, например графит и активные угли из разных источников, являются гетерогенными катализаторами разложения перекиси водорода, отличающимися рядом интересных особенностей. Активность углерода зависит от его происхождения [135] кроме того, ее можно изменять специальной обработкой, Фоулер и Уолтон [136] исследовали влияние добавки солей или желатины на каталитическую активность активированного угля из сахара [136] другие авторы изучали влияние температуры, размеров частиц, концентрации водородных ионов, излучения [137], концентрации перекиси водорода и химической природы поверхности угля. По-видимому, из всех описанных до настоящего времени свойств наиболее существенную роль играет адсорбционная способность поверхности [1381. Однако эффективность катализа не является прямо пропорциональной этой адсорбции. Обработка поверхности, например нагреванием или пропусканием над ней азота [139[, заметно изменяет активность. Чистый активированный уголь из сахара при взбалтывании с растворами перекиси водорода вызывает лишь слабое выделение кислорода, однако действие этого угля можно сильно интенсифицировать, если предварительно нагреть его в вакууме при 600°. Активированный уголь из целлюлозы и рисового крахмала, высушенный при 100°, обладает максимальной активностью более слабым действием отличается уголь из декстрина, инулина и пшеничного крахмала уголь из декстрозы, лактозы, мальтозы или картофельного крахмала едва ли обладает какой-либо активностью. Сырой костяной уголь или кровяной уголь вызывает лишь медленное разложение перекиси [c.399]

    Знание физических свойств комплексного соединения должно служить не только стимулом, но и пробным камнем в теоретических исследованиях. Несмотря на то что в настоящее время точный теоретический расчет энергии электронов в молекуле ферроцена еще невозможен, было выполнено несколько расчетов, основанных на разных приближениях, и некоторые результаты [38, 44, 45] удачно согласуются со многими известными опытными данными. Представ-вляет интерес мнение Коттона и Уилкинсона, высказанное ими в обзоре [19], о том, что наиболее полезную информацию могло бы дать подробное изучение электронных спектров и особенно спектров электронного парамагнитного резонанса. В отношении электронных спектров были достигнуты определенные успехи, однако этого нельзя сказать о втором из этих методов. Оказалось, что спектр ЭПР катиона феррициния не изучен при температуре жидкого гелия. Тот факт, что спектр ЭПР не наблюдается при температуре жидкого азота, рассматривался [39] как свидетельство в пользу [c.411]

    Другой особенностью фотохимических реакций является то, что с их помощью мояшо получать свободные радикалы и исследовать их свойства и реакции. Фотохимическую реакцию, например фоторазложение, можно провести в твердом веществе при температуре жидкого азота или жидкого гелия. В этих условиях реакции образовавшихся радикалов затруднены, и они накапливаются в ощутимых концентрациях. При пиролизе же всегда получается большой набор разных радикалов. Их время жизни в условиях высокой температуры мало и концентрация низка. [c.23]

    Определение третьего вириального коэффициента С становится необходимым для результатов более высокой точности, в особенности при высоких давлениях и при расчетах термодинамических свойств газов (теплоемкости, внутренней энергии, энтропии и др.). В табл. 31 приведены для примера значения второго и третьего вириальных коэффициентов и их производных для некоторых газов при 298,15 К и в табл. 32 значения тех же величин для азота и аммиака при различных температурах до 2000 К. Таблицы этих величин для разных газов и температур имеются в справочнике Глушко, Гурвича. [c.153]

    В первом способе плазма образуется при пропускании рабочего плазмообразующего вещества через электрическую дугу. Используемое в дуге напряжение невелико (40—100 В), плотность тока достаточно велика (>1 А). В качестве плазмообразующих газов используются обычно азот, водород, гелий, аргон. Изменяя газ, можно изменять химические свойства среды плазмы (окислительные, нейтральные, восстановительные). Плазма может иметь разную температуру (от 5000 до 50000° С). Соответственно степень ионизации может изменяться от 1 до 100%. Дуговые плазменные струи всегда в некоторой степени загрязнены материалом электродов. Поэтому наряду с дуговыми плазмотронами развивается разработка высокачастотных и сверхвысокочастотных плазмотронов, в которых источником плазмы является высокочастотный индукционный нагрев. [c.538]


    Сущность работы. Разделение многокомпонентной смеси методом адсорбционной хроматографии из одной пробы связано с трудностями вследствие большого различия в адсорбционных свойствах Отдельных компонентов разделяемой смеси. Лучшее разделение может быть достигнуто, если в процессе хроматографирования десорбцию различных компонентов смеси производить при разных температурах. Этот принцип и применен в настоящей работе. Адсорбция всех компонентов смеси на силикагеле производится при низкой температуре. При этой же температуре происходит десорбция кислорода, азота, двуокиси азота и окиси углерода. Наиболее трудно десорбируемые газы закись азота двуокись углерода десорбйру-ются при комнатной температуре. Таким путем удается полностью разделить смесь, состоящую из шести компонентов. [c.194]

    Состав ацетиленосодержащих газов определяется способом производства ацетилена, его технологическим режимом и углеводородным сырьем, предназначенным для получения ацетилена. Характерными компонентами ацетиленосодержащих газовых смесей являются, кроме ацетилена, водород, метан, этилен, окись углерода, гомологи ацетилена, азот, углекислота, пропилен и др. Все они имеют совершенно различные свойства. Основные физико-химические свойства компонентов, входящих в смеси, содержащие ацетилен, приведены в табл. 38. Как видно из таблицы, компоненты ацетиленосодержащих смесей имеют резко отличающиеся критические параметры температуры и давления, разные температуры кипения и затвердевания, различные теплоты испарения и конденсации и, как будет показано позднее, различную растворимость в жидкостях. [c.97]

    Сланцевые масла, получаемые из горючих сланцев различных месторождений, могут обладать совершенно различными свойствами. На эти свойства оказывают влияние два фактора 1) происхождение горючих сланцев и 2) метод их переработки. Горючие сланцы из разных частей света содержат органические всш,естиа различной структуры. В частности, количество второстепенных компонентов и сланцевом масле, таких, как сера и азот, указывает на некоторую разницу в исходном органическом веществе. Температура и другие условия переработки существенно влияют на характер сланцевого масла [13]. Вообще чем выше температура перегонки, тем больше ароматических углеводородов содер кит масло. [c.61]

    В разбавленных соляной и серной кислотах марганец растворяется с образованием солей марганца (И) (МпС1г, Мп304) азотной и концентрированной серной кислотами марганец окисляется (в той или другой степени) с образованием солей, соответствующих высшим степеням окисления. При повышенной температуре марганец вступает в соединение со всеми неметаллами (галогенами, серой, азотом, фосфором, углеродом, кремнием), а с большинством металлов образует сплавы разного состава. В соединениях марганец проявляет степени окисления от 4-2 до +7. На примере этих соединений можно видеть, как влияет изменение степени окисления элемента на свойства окси-ДОВ 1- и ,1 [c.148]

    Сведения о физических свойствах веществ (температуры плавления, кипения, уиругости паров при соответствующих температурах и т. д.) берут из справочников. Во многих случаях для разных работ применяют типовую аппаратуру (при получении металлов восстановлением их оксидов водородом, нри получении нитридов действием азота или аммиака на металлы и т. д.), поэтому в тексте могут быть ссылки на один рисунок (схему прибора), но с указанием, какие конкретно следует брать вещества при данном синтезе. [c.5]

    В молекуле оксида диазота N20 содержатся связи азот — азот и азот — кислород, поэтому два атома азота в N2 имеют разные степени окисления. Получение КгО основано на частичной внутримолекулярной конмутации азота(-П1) и азота(У) в нитрате аммония при нагревании. Оксид диазота — несолеобразующий, с водой не реагирует, при повышенных температурах разлагается на азот и кислород и проявляет сильные окислительные свойства. [c.154]

    Нитриды ниобия и тантала получаются при нагревании порошковидных металлов в токе азота или аммиака при высоких температурах. В зависимости от температуры и продолжительности нагревания можно получить нитриды с разным содержанием азота. Нитриды получаются также при нагревании пятиокисей в токе азота в присутствии углерода. Рентгенографическое исследование системы N — ЫЬ показало, что растворимость азота в ниобии не превышает 4,8% (ат.) и что в системе образуются два нитрида — ЫЬгЫ и ЫЬЫ. Последний очень устойчив по отношению к различным кислотам, в том числе к царской водке при кипячении в растворе шелочи он разлагается с выделением ЫНз. Важна его способность переходить в сверхпроводящее состояние при 15,6° К. В связи со своими свойствами ЫЬЫ может быть использован в радиотехнике, электронике, автоматике. [c.149]

    По L. Wohler y и L. Metz y для отделения родия можно воспользоваться свойством родия образовать с висмутом сплавы, растворимые в азотной кислоте. Сплавляют мелкораздробленный сплав родия — иридия — рутения с 25—30-кратным (по родию) количеством висмута в течение часа при температуре не ниже 800° и предохраняют сплав от доступа воздуха, покрывая тигель древесным углем или пропуская в тигель азот. Получившийся королек (висмутовый сплав) растворяют в 50%-ной азотной кислоте, отфильтровывают нерастворившиеся иридий и рутений и после выпаривания с соляной кислотой из раствора висмута-родич осаждают висмут в виде хлорокиси. Осадок висмута необходимо переосадить несколько раз, так как он захватывает родий. Из соединенных вместе фильтратов от разных осаждений хлорокиси выделяют металлический родий цинком, затем полученную губку очищают хлЬрированием с хлористым натрием и, наконец, еще раз осаждают родий магнием из уксуснокислого раствора. Если в первоначальном сплаве родия, кроме иридия и рутения, содержится еще платина и палладий, то сначала сплавляют сплав с серебром и обрабатывают металлический королек азотной кислотой, причем главная масса платины и палладия переходит в раствор. [c.373]

    ФЕРМЕНТАЦИЯ. Биохимический процесс превращения веществ при переработке растительного и животного сырья. При Ф. главным образом формируются специфические свойства того или иного продукта, его вкус, цвет, аромат и др. Поэтому в пищевой, легкой и фармацевтической промышленности Ф.— основной технологический процесс. Примерами в этом отношении являются чайная, табачная, хлебопекарная отрасли промышленности. Предполагали, что Ф.—микробиологический процесс. Но в настоящее время благодаря исследованиям советских ученых окончательно установлен ферментативный характер этих превращений. Главную ро.иь в этом процессе играют ферменты, как ускорители процессов превращения веществ. Для нормального течения Ф. необходимо прежде всего разрушение тканей и клеток растительного и животного сырья, например помол зерна в мукомольно-хлебопекарном производстве, раздавливание виноградной ягоды в виноделии, томление и сушка табачного листа, скручивание завяленного чайного листа и т. д. Для нормального течения Ф. требуется также создание определенных условий — температура, относительная влажность воздуха и др. Чайный лист после завяливания подвергается скручиванию на специальных машинах — роллерах, где происходит разрушение тканей и клеток листа, содержимое которых подвергается биохимическим изменениям с участием ферментов. Листья чая содержат сложную смесь катехинов, которые при Ф. претерпевают окислительную конденсацию с образованием более сложных соединений. Катехины взаимодействуют не только между собой, но и с разными аминокислотами, образуя соединения, обладающие разными запахами, с сахарами, белками и другими соединениями. В результате сложных превращений при Ф. образуются цвет, вкус, аромат черного байхового чая. Ф. табака — автолитический процесс, происходящий в убитых тканях листьев после их томления и сушки. При этохм окончательно формируются характерные признаки качества табака, как сырья для получения табачных изделий. Изменяется химический состав табака, уменьшается содержание белкового азота и идет накопление растворимых азотистых соединений, ул1еньшается содержание никотина, идет распад углеводов, накопление ароматических со- [c.317]

    Экспериментальные исследования термодинамических, в основном термических, свойств воздуха и его компонентов — азота, кйслорода и аргона — проводились во многих лабораториях мира, разными исследователями, па различным методикам и в paзличныx диапазонах температур и давлений. На основании опытных данных рядом исследователей составлялись различного вида уравнения и диаграммы состояния и таблицы термодинамических свойств. К сожалению накопленный материал не был в достаточной мере систематизирован разрозненные попытки систематизации приводили к тому,, что при сопоставлении их результатов наблюдались заметные расхождения [35]. В связи с этим в последние годы по поручению ВНИИкимаша на кафедре термодинамики Одесского института инженеров морского флота (ОИИМФ) была проведена работа по анализу, обобщению и увязке между собой всех имеющихся опытных данных по термодинамическим свойствам воздуха и ero основных компонентов — азота, кислорода и аргона — с составлением уравнений состояния, подробных таблиц термодинамических. свойств й диаграмм состояния. [c.19]

    Для иллюстрации наших выводов можно привести некоторые данные-из литературы об исследовании промышленных коксов. Я. О. Габинский и Г. М. Исаров [373] прокаливали кокс разных заводов в нейтральной и окислительной атмосфере при температуре от 800 до 1150° и определяли происходившие изменения прочности и трещиноватости кокса. Установленные ими изменения свойств кокса легко объяснить изменениями его структуры. Прокаливание готового кокса в атмосфере азота не вызывало-особых изменений прочности и трещиноватости кусков кокса. Очевидно, что этот кокс достиг стадии завершения своей структуры. Напротив, прокаливание в окислительной атмосфере, особенно в токе углекислого газа, приводило к заметному увеличению количества и протяженности трещин. Трещиноватость кокса, прилегающего к стенам камеры печи, увеличивалась меньше, чем кокса из середины печи (рис. 218). Причем это явление наблюдалось при прокаливании в разной среде и при различной температуре. Разрыхление кусков кокса, появляющееся в наиболее сильной окислительной атмосфере, более сильно было выражено в частях кусков, удаленных от стенок коксовой печи. Выдерживание кокса при наивысшей температуре выравнивало структуру коксов, полученных из разных углей. В этой работе было установлено также, что после прокаливания при 1000° в атмосфере СОг дробимость кокса в большинстве случаев возрастала (испытано методом сбрасывания), а показатели ситового состава для всех коксов становились почти одинаковыми. [c.334]

    Кроме того, модель предсказывала, что ДНК с промежуточной плотностью должна представлять собой гибридную двойную спираль, одна из цепей которой содержит только тяжелый изотоп азота (N ), а другая-только легкий. Мезелсон и Сталь нагревали ДНК промежуточной плотности в течение 30 мин при температуре 100°С, что, как уже было известно, изменяет физические свойства молекулы, не разрывая ковалентных связей, и обнаружили, что она превращается в две равные по объему фракции ДНК с разными плотностями. Плотность одной из фракций, образовавшихся в результате нагревания, совпадала с плотностью тяжелой ДНК, а другой-с плотностью легкой ДНК (рис. 4.15). [c.111]

    Уотсон с сотр. [25, 26] детально изучал механохимические процессы в системе НК — ПММА, проводя эксперименты в лабораторном пластикаторе при частоте вращения 76 об/мин и температуре 15 °С в среде азота. Перед пластикацией депротеинизи-рованный НК экстрагировали ацетоном, насыщали мономером и гомогенизировали в течение 16 ч без доступа света. Необходимо особо подчеркнуть, что из-за ограниченных возможностей рассеяния теплоты во время пластикации и прохождения реакций фактическая температура каучука была значительно выше по показаниям прибора она могла достигать 50 °С в зависимости от интенсивности сдвига и свойств материала. Это значительно затрудняет изучение влияния скорости сдвига независимо от остальных параметров, так как увеличение частоты вращения ротора повышает термопластикацию каучука из-за выделения теплоты трения. Методы фракционного осаждения и экстракции позволяют разделить полученный продукт на два гомополимера и две разных фракции межполимера (рис. 5.15). [c.162]


Смотреть страницы где упоминается термин Свойства азота при разных температурах: [c.490]    [c.24]    [c.15]    [c.58]    [c.43]    [c.22]    [c.95]    [c.362]    [c.547]    [c.185]    [c.181]   
Смотреть главы в:

Справочник сернокислотчика 1952 -> Свойства азота при разных температурах




ПОИСК





Смотрите так же термины и статьи:

Азот, свойства



© 2025 chem21.info Реклама на сайте