Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поток до мембраны

    Однако самое большое достоинство этой идеи заключается в том, что можно применять неплотные, характеризующиеся большим значением потоков мембраны и, следовательно, сократить размер [c.287]

    Аппарат с плоскими мембранными элементами состоит из листовых мембран, уложенных по обе стороны пористых или имеющих множество мелких канавок плит (рис. 7.18). Пластины устанавливаются на некотором расстоянии друг от друга (1-5 мм). В щелевые каналы между пластинами подается исходная жидкость. Извлекаемый целевой компонент проходит через левую и правую для каждого потока мембраны и [c.469]


    Подвижная механическая система электромагнитных излучателей состоит из якоря с возвратной пружиной или упругой мембраны, закрепленной по контуру. Как якорь, так и упругая мембрана выполняются из ферромагнитных материалов, так как они являются составной частью магнитопровода, по которому замыкается магнитный поток. Мембраны должны, кроме того, обладать большой упругостью и малой остаточной деформацией. Возвратные пружины якоря могут быть плоскими и спиральными. [c.32]

    Прокладка канала исходного потока Мембрана [c.25]

    По варианту, показанному на рис. 38, возможно перекрытие потока газа после срабатывания мембраны. [c.92]

    Мембраны Защита, контроль за потоком веществ внутрь и вовне организма, передача информации внутри организма Рецепторы [c.259]

    Мембрана, как и любая открытая система вблизи равновесия, при неизменных внешних условиях стремится к устойчивому стационарному состоянию, которое характеризуется минимальным положительным значением производимой энтропии. Диссипативная функция Ч , определяемая соотношением типа (1.9), обладает свойством потенциала, т. е. минимальна в стационарном состоянии, которое устойчиво и однозначно, если. сохраняется линейность связей между потоками и силами, положенная в основу феноменологических уравнений (1.7) и соотношения Онзагера (1.8). [c.26]

    Граничные условия для компонентов разделяемой газовой смеси задаются их потоками через поверхность мембраны  [c.30]

    Транспорт компонента разделяемой газовой смеси через пористую основу мембраны осуществляется одновременно несколькими механизмами переноса, в зависимости от структуры матрицы, свойств веществ и термодинамических параметров процесса. В общем случае движение компонентов смеси может вызываться конвективно-фильтрационным переносом, различного вида скольжениями вдоль поверхности пор, объемной диффузией, баро- и термодиффузией, кнудсеновской диффузией (эффузией), поверхностной диффузией, пленочным течением вследствии градиента расклинивающего давления, капиллярным переносом конденсированной фазы в анизотропных структурах. Вещество в порах скелета мембраны, как показано ранее, может находиться в виде объемной газовой фазы, капиллярной жидкости и адсорбированной пленки. Для каждого из этих состояний возможно несколько механизмов переноса, взаимосвязанных между собой. Не все виды переноса равнозначны по своему вкладу в результирующий поток веществу, поэтому при вычислении коэффициента проницаемости необходимо определить условия, при которых те или иные формы движения вещества являются доминирующими [З, 9, 10, 14—16]. [c.54]


    Плотность потока вещества, отнесенного на единицу площади пористой мембраны, при свободномолекулярном течении также может быть описана уравнением Фика [c.55]

    Плотность поверхностного потока, отнесенная к внешней поверхности мембраны, определяется соотношением, аналогичным (2.47)  [c.60]

    В каналах пористой мембраны при 7Сп<1 возникают потоки компонента вследствие концентрационной диффузии, а также массовые потоки в результате фильтрационного переноса и скольжения. [c.63]

    В разд. 4.2 обращалось внимание на возможность возникновения смешанно-конвективного течения в каналах мембранных элементов. Замечено [33—35], что при жидкофазном разделении потоки массы, проникшие через верхнюю и нижнюю стенки мембранного элемента, существенно различны. Джонсон [35], исследуя оптическим методом поле концентраций вблизи вертикальной плоской мембраны, отметил существенное изменение распределения концентраций при возникновении свободной конвекции. [c.138]

    Если полученные результаты не удовлетворяют поставленной цели, например Ср меньше заданной величины, или не обеспечивается нужная степень разделения, необходимо изменить параметры питающего потока и прежде всего давление, в некоторых случаях выявляется непригодность мембраны с данными свойствами (а,/ и Л,) для реализации одноступенчатого процесса. [c.153]

    Газ в напорном и дренажном каналах может двигаться прямотоком, противотоком и перекрестным током. Варианты организации потоков представлены на рис. 5.1. Массовые потоки в мембране и пористой подложке ориентированы по нормали к поверхности мембраны. [c.157]

    Массообмен в напорном и дренажном каналах определяется конвекцией и диффузией. Структура потоков в этих каналах может приближаться к предельным моделям идеального вытеснения или смешения чаще же она представляет более сложную модель, учитывающую влияние продольного и поперечного перемешивания. Массоперенос в мембране определяется типом мембраны (см. гл. 1) и может быть только диффузионным или же диффузионным и фазовым одновременно, как в пористых мембранах и пористой основе асимметричных мембран. [c.157]

    Как показано в гл. 3, проницаемость и селективность мембраны в общем случае зависят от типа мембран, температуры, давления и состава смеси в напорном и дренажном каналах. Движущая сила процесса меняется вдоль поверхности мембран и зависит от схемы организации и структуры потоков в напорном и дренажном каналах. Таким образом, для разделительного модуля площадь поверхности мембраны будет определяться [c.158]

    При расчете приняты следующие допущения [17] исходный газовый поток подается на активный слой мембраны поток в пористом слое направлен перпендикулярно к поверхности мембраны сопротивлением пористой подложки можно пренебречь, т. е. падения давления в пористом слое не происходит перемешивание пермеата различного (по длине канала) состава в пористом слое не происходит перенос в пористом слое происходит преимущественно конвекцией коэффициенты проницаемости компонентов разделяемой смеси не зависят от давления и концентрации движение потока пермеата внутри волокна описывается уравнением Гагена — Пуазейля деформацией полого волокна под действием разности давлений можно пренебречь. [c.173]

    Из приведенных в таблице данных можно сделать вывод, что при низких значениях уг (модуль работает на исчерпывание целевого компонента) противоточная схема более выгодна и в отношении более высокой концентрации пермеата, и в отношении производительности модуля. При более высоких значениях Уг организация потоков в напорном и дренажном пространствах практически не влияет на эффективность работы модуля с асимметричными или композиционными мембранами (в том числе и в виде полых волокон). На рис. 5.14 представлены результаты расчетов модуля с полыми волокнами, причем расчет проведен как для симметричных (сплошных), так и для асимметричных волокон. Расчетные данные подтверждаются результатами экспериментов, проведенных на модуле с асимметричными полыми волокнами, особенно при малых значениях коэффициента деления потока 0. При больших значениях 0, равных 0,24—0,28, результаты экспериментов для прямо- и противотока не совпадают, что можно объяснить продольной (обратной) диффузией в пористом слое мембраны. [c.181]

    Влияние продольной диффузии (молекулярной или кнудсеновской, в зависимости от размера пор) в порах подложки тем больше, чем больше проницаемость компонентов через селективный слой мембраны и коэффициент деления потока 0. При этом увеличивается (или уменьшается, в зависимости от организации потоков) разность между концентрациями распределяемого компонента на границе селективного и пористого слоев мембраны у и содержанием этого компонента внутри полого волокна Уа. При противотоке концентрация у на границе селек- [c.181]


    Результаты расчетов мембранных многоступенчатых установок с рециркуляцией (идеальные каскады) для разделения бинарной смеси (воздух) приведены в табл. 6.1 [3]. В качестве мембраны использовали силоксановую пленку толщиной б = = 10 м коэффициенты газопроницаемости кислорода и азота через мембрану соответственно равны Лоз = 113,8-10 моль- м/(м -с-Па) и ЛN2 =51,9-10- 5 моль-м/(м2-с-Па). Давления в напорных и дренажном каналах мембранных модулей поддерживали равными Р1=0,6 МПа, Рг = 0,1 МПа. Цель процесса — получение 1 м /с обогащенного до 91—92% (об.) О2 газового потока, поэтому установка представляет собой только укрепляющую часть каскада. [c.209]

    Основой шестиходового мембранного крана (рис. 54) является пневмоэлемент, состоящий из двух деталей с обращенными навстречу лунками, между которыми помещена эластичная мембрана. Сообщение штуцеров / и 2 через лунку прекращается, если в штуцер 3 подано давление, по крайней мере на 0,05 МПа (0,5 кгс/см ) превышающее давление газа в управляемом потоке (мембрана прижата к поверхности нижней лунки). Снятие давления вновь открывает сообщение штуцеров (мембрана занимает нейтральное положение или прижата к поверхности верхней лунки). Мембранный кран удачно сочетает в единой конструкции шесть пневмоэлементов с двумя мембранами. Переключение крана осуществляется подачей давления воздуха к верхней или нижней мембране. [c.113]

    Предполагается, что на обеих межфазных границах мембраны выполняется термодинамическое равновесие, т. е. химический потенци-аил данного компонента (жидкого или газообраьзного) на границе раздела сырьевой поток — мембрана одинаков в обеих фазах. Далее, давление внутри мембраны предполагается равным давлению в сырьевом потоке. Тогда для входной поверхности мембраны можно получить следующее выражение [22] [c.262]

    Сырье и водяной пар контактируют в слое никелевого катализатора, расположенного на поверхности трубчатой металлической мембраны, через которую может проникать водород, при мольном соотношении HjO С, равном 2 ч- 4 1, температуре 175—515° С, давлении 1—24 ата и объемной скорости 100—10 000ч . Расстояние между любой точкой катализатора в слое и поверхностью мембраны менее 0,625 см. Газовый поток вводят на катализатор непрерыв- [c.122]

    Наряду с ультразвуковой аппаратурой все более широкое при-мс11 сние находят пульсационные аппараты. Пульсация жидкости создается внутренним источником, например с помощью какого-ли-бо элемента, колеблющегося а жидкости, или внепшнм псточннком — путем установки прерывателя потока иа входе жидкости в аппарат или мембраны, связанной с вибратором. [c.201]

    Наименьшей ячейкой мембранного массообменного устройства является мембранный элемент, состоящий из напбрного и дренажного каналов, разделенных селективно-проницаемой перегородкой. Тип элемента определяется геометрией разделяющей поверхности (плоские, рулонные, трубчатые, волоконные) и организацией движения потоков газа (прямо-и противоточные, с перекрестным током, с рециклом разделяемой смеси и т. д.). Напорный канал элемента плоского типа образован селективно-проницаемыми стенками, ориентированными горизонтально или вертикально. В элементах трубчатого типа напорный канал ограничен внутренней поверхностью одной трубки или наружной поверхностью нескольких соседних трубок. Разделительная перегородка обычно состоит из собственно мембраны, пористой подложки и конструктивных деталей, обеспечивающих механическую прочность и жесткость. Массовые потоки в мембране и пористой подложке ориентированы по нормали к разделяющей поверхности. [c.10]

    Мембраны, свободно проницаемые только для одного компонента, принято называть полупроницаемыми, а остальные — селективно-проницаемыми, или просто проницаемыми. При разделении газовых смесей обычно имеют дело с селективно-проницаемыми мембранами, поэтому из напорного канала через стенки разделительного элемента проникают все компоненты смеси, но с различной скоростью. Поскольку движущая сила переноса компонента определяется разностью химических потенциалов в напорном и дренажном каналах, скорость проницания каждого компонента меняется по длине мембранного элемента и зависит (как показано ниже) от термодинамических и гидродинамических параметров процесса. Скорость проницания компонентов через мембрану традиционно определяют, используя понятия и феноменологические соотношения фильтрационного процесса. Плотность потока -го компонента через мембра-ну принимают линейно зависящей от перепада давлений над и под мембраной  [c.12]

    В реакционно-диффузионных мембранах, где возникают, мигрируют и распадаются промежуточные химические соединения, массоперенос описывается системой нелинейных дифференциальных уравнений, решение которых неоднозначно и сильно зависит от степени неравновесностн системы при этом в результате сопряжения диффузии и химической реакции возможно возникновение новых потоков массы, усиливающих или ослабляющих проницаемость и селективность мембраны по целевому компоненту. При определенных пороговых значениях неравно-весности, в так называемых точках бифуркации, возможна потеря устойчивости системы, развитие диссипативных структур, обладающих элементами самоорганизации. Это характерно для биологических природных мембран, а также для синтезированных полимерных мембранных систем, моделирующих процессы метаболизма [1—4]. [c.16]

    Если выбор движущих сил 1 и Дг независим, то при определенных условиях выражение в скобках и величина Р могут приближаться к нулю при конечных значениях потоков. Поскольку диссипативная функция характеризует рассеяние свободной энергии, это означает приближение процессов в условиях полного сопряжения к термодинамической обратимости. Подробнее проблема энергетической эффективности процессов мембраны в условиях их сопряжения рассмотрена в гл. 7. Здесь же оценим влияние степени сопряжения на скорость массопереноса в мембране. На рис. 1.2 показан общий вид зависимости, где величина Z использована для приведения отношений потоков /]//2 и сил Х-21Х1 к безразмерной форме. [c.19]

    На рис. 1.5 показаны возможные режимы сопряженного массопереноса в мембране при положительном (а) и отрицательном (б) сопря жении. Условие равенства химических потенциалов на границах мембраны (ti = n"i) соответствует состоянию с фиксированным потоком (Xi = 0, h LirAr, АгфО), которое делит возможные режимы на две группы с положительными и отрицательными значениями приведенной движущей силы сопряженного массопереноса ZXijAr (рис. 1.5, а). Предельное положительное значение этой величины ZX IAr соответствует нулевому химическому потенциалу в дренажном канале (ji,"j->0), который можно создать при бесконечно большой скорости отвода проникшего потока (например, с помощью газа-носителя [c.24]

    Нулевая скорость отвода проникшего потока в стационарном состоянии соответствует режиму с фиксированной силой (/ = 0, 0, 4г = onst), когда результирующий поток через мембрану равен нулю за счет компенсации величин Д, и LirAr, а на границах мембраны поддерживается определенная разность химических потенциалов (ц, —м- г<0 при и>0 и я 1—ц 1>0 при х<0). [c.25]

    Диффузионный поток растворенного газа находят по уравнению (3.22), в котором скорость перемещения плоскости отсчета, определяемая по условию (3.23), в силу нецодвижности вещества матрицы мембраны равна [c.76]

    Обсудим проблему селективности процесса в полимерных мембранах. Столь большое число факторов, влияющих на проницаемость чистых газов, очевидно, скажется на селективности процесса. При разделении газовых смесей в общем случае необходимо учитывать взаимное влияние диффузионных потоков компонентов в мембране, при этом основные сорбционные и диффузионные характеристики процесса оказываются сложной функцией состава газовой смеси. Небольшая примесь сильно-сорбируемого компонента, который отличается специфическим взаимодействием с веществом матрицы мембраны или одним из прочих компонентов смеси, может радикально изменить проницаемость всех компонентов, поэтому принцип аддитивности при определении общего потока через мембрану и оценку селективности процесса на этой основе следует проводить с большой осторожностью. Тем не менее воспользуемся указанным принципом для выявления некторых закономерностей разделения. [c.104]

    Примечание. Значения плотности потока водорода соответствуют давлениям в напорном канале Р = 0,294 МПа, в дренажном каиале Р"->0 толщина мембраны 0,15 мм. [c.118]

    Расчет процесса разделения смеси в мембранном модуле представляет сопряженную задачу, включающую решение системы уравнений, неразрывности, движения и диффузии (4.1ч-4.4) в напорном и дренажном каналах, которые взаимосвязаны граничными условиями в форме уравнений проницания (4.5- -4.8). Следует учесть, что скорость отсоса (вдува) и селективность мембраны являются функцией термодинамических и гидродинамических параметров газовых потоков, меняющихся вдоль канала и зависящих от выбранной схемы движения в мембранном модуле. Кроме того, в определенных условиях возможно возникновение свободной конвекции вследствие концентрационной неустойчивости диффузионного погранслоя. Численное решение системы дифференциальных уравнений весьма громоздко и в ряде случаев основано на существенных упрощениях реальной физической картины, например, не учитывается продольная диффузия и свободная конвекция. Процедуру вычислений можно упростить, если использовать одномерные уравнения расхода, импульса и диффузии (4.18), (4.21) и (4.29) и обобщенные законы массообмена, изложенные выше. [c.150]

    Таким образом, система одномерных дифференциальных уравнений (4.73), дополненная граничным условием и обобщенными уравнениями для расчета массопереноса внутри мембраны Л,=Л (Г, Р, r) и массообмена в напорном канале Sh = = Sho4 (Rev, Gz, Ra ), образует математическую модель процесса разделения. Обычно заданы состав питающей смеси i = m(x = 0), необходимый состав проникшего потока Ср на выходе из мембранного модуля, коэффициент или степень извлечения целевого компонента. В зависимости от цели расчета определяется производительность по целевому компоненту или необходимая площадь поверхности мембраны. Давление, температура и скорость газа в входном сечении напорного канала II давление в дренажном канале являются параметрами, значение которых можно варьировать для поиска оптимального решения. Подробнее эти вопросы будут освещены далее в главе V, здесь же ограничимся только схемой расчета массообмена в отдельном мембранном элементе, полагая параметры исходной смеси и давление в дренаже известными. [c.153]

    Данный вариант расчета проводят в случае, когда велики скорость потока, соотношение длины и ширины напорного канала, фактор разделения мембраны и коэффициент деления потока 6. Проникший через мембрану поток отводится с помощью вакуум-насоса, значение Рг = Р21Р мало [1, 2]. При этом перенос в напорном и дренажном каналах осуществляется преимущественно конвекцией (рис. 5.3). Пример такого процесса — получение обогащенного азотом потока из воздуха. [c.161]

    Для процессов мембранного разделения газовых смесей с использованием высокоселективных композиционных мембран важен вопрос о концентрационной поляризации [14, 15]. В общем случае в результате селективного переноса компонентов газовой смеси через мембрану в напорном канале модуля возникает градиент концентраций по нормали к мембране. В результате у поверхности мембраны образуется пограничный слой, в котором концентрация целевого (или селективнопроникающего) компонента меньше, чем в ядре потока. В процессах мембранного разделения газов компоненты газовой смеси переносятся к мембране как конвекцией, так и молекулярной диффузией. Решение уравнения совместного конвективно-диффузи-онного переноса через пограничный слой к поверхности мембраны приводит к следующему выражению для концентрации целевого (или г-го) компонента ую в газовой фазе у поверхности мембраны в напорном канале [16]  [c.172]

    Л. Н. Чекалов с сотр. [16] проанализировали влияние организации потоков в модуле плоскопараллельного типа на эффективность разделения. Они оценили влияние параметра С = = ехр(—18о/гО) при разделении воздуха с помощью модуля на основе асимметричной мембраны из поливинилтриметилсилана (ПВТМС) и пористой подложки из поливинилхлорида (ми-пласт) при перепаде давлений на мембране Ар 0,1 МПа. Коэффициент диффузии в пористом слое в первом приближении принимали равным коэффициенту молекулярной диффузии [c.182]

    На рис. 5.15 приведено сравнение экспериментальных и расчетных данных для разделения воздуха в модуле на основе ПВТМС-мембраны и пористой подложки из мипласта (а°=3,55) при различных вариантах организации потоков. Результаты расчетов по модели параллельного (прямо- и противоположного) движения потоков в напорном и дренажном пространствах модуля совпадают с экспериментальными данными (относительная ошибка не более 3%). Как видно из рисунка, осуществление процесса разделения газов в аппаратах плоскорамного типа с использованием высокопроизводительных асимметричных или композиционных мембран наиболее эффективно при противотоке в напорном и дренажном пространствах. [c.183]

    Результаты уточненных расчетов показывают, что при разделении 5,66 м /(м -ч) трехкомпонентной газовой смеси, характеристики которой приведены выше, ретант состоит из (об. %) 7,85 компонента А, 47,01 В, 45,13 С. При этом пермеат имеет следующий состав (об. %) 21,31 А, 65,75 В, 12,94 С поток пермеата через единицу площади мембраны равен 0,903 м (м -ч). [c.191]


Смотреть страницы где упоминается термин Поток до мембраны: [c.25]    [c.11]    [c.12]    [c.24]    [c.30]    [c.34]    [c.76]    [c.105]    [c.178]   
Введение в мембранную технологию (1999) -- [ c.485 ]




ПОИСК







© 2024 chem21.info Реклама на сайте