Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография проточная,

    Кондуктометрический детектор, принципиальная схема которого изображена на рис. 18.3, применяется в основном в ионной хроматографии. Детектор состоит из проточной ячейки, в которую подается анализируемый раствор, и устройства регистрации аналитического сигнала. Кондуктометрическая ячейка представляет собой камеру объемом менее 10 мкл, соединенную с двумя электродами из платины, золота или нержавеющей стали. Сопротивление ячейки измеряют с помощью моста сопротивления Уитстона. [c.574]


    Если оснастить хроматограф проточным вискозиметром (в качестве второго детектора), то одновременно с концентрационной будет сниматься зависимость удерживаемого объема от характеристической вязкости [c.232]

    Опыт ы проводили па проточной установке но методике [1]. Жидкие продукты реакции анализировали на хроматографе ЛХМ-7А, а газообразные - на ХЛ-3 и XI-2M. [c.329]

    В последнее время для идентификации фракций все шире привлекают инфракрасную спектроскопию, масс-спектроскопию, а также газовую хроматографию. Для анализа все чаще применяют проточные приборы, обеспечивающие непрерывность контроля. [c.179]

    Метод нисходящей хроматографии применяют и как проточный, т. е. дают растворителю стекать со слоя, а растворитель подают непрерывно. [c.141]

    При работе по методу нисходящей хроматографии с незакрепленным слоем требуется специальное устройство, схема которого изображена на рис. 1У.13. Сосуд с растворителем устанавливают в кристаллизаторе на подставке так, чтобы растворитель мог подаваться в верхнюю часть пластинки. Подача и слив растворителя (при проточном методе) происходят по фитилям нз фильтровальной бумаги, помещаемым в щели (рис. 1У.13). Пластинку помещают на раму и устанавливают в кристаллизаторе под углом 15—20°. Кристаллизатор герметизируют, после чего производят хроматографирование, останавливая движение фронта растворителя за несколько сантиметров до нижнего края слоя сорбента. [c.144]

    В настоящее время препаративные газовые хроматографы выпускает наряду с аналитическими хроматографами приборостроительная промышленность. Как и в аналитических приборах, в них применяются проявительный способ разделения. Но они существенно отличаются от аналитических приборов по характеру, конструкции и назначению отдельных узлов. Прежде всего, как уже сказано, отличие состоит в применении хроматографических колонок намного большего диаметра. Далее, детектор играет вспомогательную роль, так как перед ним ставится ограниченная задача контроля за качеством разделения. Он автоматически переключает поток газа нз колонки в Конденсационную ловушку во время отбора продуктов разделения. Переключается поток во время конденсации каждого пика по программе, задаваемой экспериментатором, с помощью электромеханических или электронных устройств. Конденсация происходит в специальных ловушках, погруженных в сосуд Дьюара с жидким азотом или охладительной смеси из твердой двуокиси углерода и ацетона. Если разделяют высококипящие вещества, ловушки можно охлаждать проточной водой. При разделении газообразных веществ, например углеводородных газов, целесообразно ловушки наполнять адсорбентом. Адсорбированные целевые продукты разделения потом десорбируют при повышенной температуре, газы конденсируют в стальные баллончики, погру- [c.213]


    Для получения вакантной хроматограммы можно использовать любой хроматограф с проточными камерами детектора. Вакантная хроматография имеет ряд практических преимуществ перед обыкновенной газовой хроматографией. Так как анализируемая смесь непосредственно пропускается через слой сорбента, а дозировка осуществляется по объему газа-носителя, то резко упрощается и уточняется операция дозировки. Исчезает необходимость в применении специальных материалов для изготовления дозаторов. Устраняется возможность термического разложения анализируемых неустойчивых соединений в дозаторах обычной конструкции. Допускается применение более активных сорбентов, что приводит к большей селективности разделения. [c.20]

    Величину Л х применяют главным образом в проточной хроматографии, где растворитель стекает с края бумаги и расстояние до фронта растворителя измерить невозможно. Стандартное вещество не должно перемещаться слишком быстро, чтобы оно не стекало с бумаги. Фронт [c.353]

    Применение газовой, хроматографии имеет свои ограничения. Далеко не все вещества можно переводить в газовую фазу без разложения. В особенности это относится к сильно ассоциирующим, термически нестойким соединениям, в том числе ко многим биологически активным и высокомолекулярным веществам. Химическое модифицирование (дериватизация) молекул таких термически нестойких веществ для устранения или ослабления их способности к ассоциации лишь отчасти помогает обойти эти затруднения. Поэтому, начиная с середины 60-х годов, когда были преодолены трудности в разработке проточных детекторов для обнаружения компонентов в жидких растворах, началось бурное развитие жидкостной хроматографии (ЖХ), причем в основном адсорбционной жидкостной хроматографии, т. е. произошло второе рождение собственно хроматографии Цвета. В настоящее [c.9]

    С целью непрерывного определения концентрации анализируемых компонентов разделяемой смеси используют различные приспособления, снабженные проточными кюветами. Концентрацию вещества в потоке жидкости определяют, измеряя показатель преломления, диэлектрическую проницаемость, электропроводность, интенсивность светопоглощения и т. д. Более подробно этот вопрос будет рассмотрен ниже при описании жидкостного хроматографа. [c.45]

    Технические данные жидкостного хроматографа ХЖ-1305 следующие максимальное рабочее давление насоса (для прокачки подвижной фазы) — 20 кг/см объемные скорости подачи растворителя — 16—4000 мкл/ч размеры колонок (длина 30, 50, 100, 150 мм, внешний диаметр 0,5 1 мм) спектрофотометрический детектор (спектральный диапазон — 200—600 нм, объем проточной кюветы — 0,8 мкл). [c.51]

Рис. 49. Прибор для горизонтальной (проточной) тонкослойной хроматографии Рис. 49. Прибор для горизонтальной (проточной) тонкослойной хроматографии
    Наиболее распространенным детектором в эксклюзионной хроматографии полимеров является дифференциальный рефрактометр. При работе с этим детектором следует помнить, что в диапазоне примерно до 5-10 —5-10 его сигнал зависит от молекулярной массы полимера. Поэтому при исследовании полимеров, содержащих значительное количество низкомолекулярных фракций, в процессе обработки результатов нужно вводить соответствующие поправки или, если это возможно, проводить специальную калибровку детектора. Из детекторов, разработанных специально для анализа полимеров, следует упомянуть вискозиметрический детектор и проточный лазерный нефелометр (детектор малоуглового лазерного светорассеяния). Эти детекторы в комбинации с рефрактометром или другим концентрационным детектором позволяют непрерывно определять молекулярную массу полимера в элюенте. При их использовании отпадает необходимость калибровки разделительной системы по исследуемому полимеру, но обработка информации может осуществляться только на ЭВМ. Вискозиметрический детектор, кроме того, является очень удобным прибором для исследования длинноцепной разветвленности синтетических полимеров. [c.43]

    ИОННАЯ ХРОМАТОГРАФИЯ, разновидность ионообменной хроматографии, в к-рой разделяемые ионы определяют в проточном, как правило, кондуктометрич. детекторе. Анализ осуществляется в автоматизир. приборе-ионном хроматографе. [c.257]

    Новым вариантом адсорбционной хроматографии является проточная хроматография, которая по сравнению с классическим вариантом имеет ряд преимуществ. При выборе адсорбента, растворителя и приготовления хроматографической колонки для проведения проточной хроматографии обычно руководствуются теми же соображениями, что и при хроматографировании по методу Цвета. Различие этих методов заключается в том, что в случае проточной хроматографии процесс не оканчивается на стадии проявления хроматограммы, а продолжается дальше. Индивидуальные вещества постепенно вымываются в фильтрат, где собираются в отдельные приемники. Как правило, для того чтобы элюировать все компоненты разделяемой смеси, необходимо применять не один, а ряд растворителей, используемых последовательно в порядке их расположения в элюотропном ряду-В настоящее время проточная хроматография является наиболее широко распространенным видом адсорбционной хроматографии. [c.362]


    Колонки для проточной хроматографии изображены на рис. 336. Наименьшая из них представляет собой трубку, снабженную краном для регулирования тока растворителя (рис. 336, а). В коническую часть трубки помещают комок ваты для того, чтобы столбик адсорбента занимал только широкую часть трубки. Колонка, изображенная на рис. 336, б, имеет впаянную пластинку из пористого стекла. Для хроматографирования больших количеств вещества удобны колонки с отделяемой нижней частью, в которую впаяна пластинка из пористого стекла (рис. 336, б). [c.362]

    В остальном оборудование, необходимое для проточной хроматографии, не отличается от аппаратуры, применяемой при хроматографировании по методу Цвета. Для отбора элюата применяют колбы с пришлифованными пробками, из которых непосредственно можно отгонять растворители. Практически достаточно иметь две колбы — в одну отбирается элюат, в то время как из другой отгоняется растворитель. [c.363]

    Проведение проточной хроматографии [c.363]

Рис. 336. Колонки для проточной хроматографии. Рис. 336. Колонки для проточной хроматографии.
    В случае кристаллических веществ дальнейшую очистку проще всего проводить путем кристаллизации, хотя в результате хроматографирования часто сразу удается получить фракции, настолько обогащенные основным компонентом, что кристаллизация уже не приводит к дальнейшей очистке. В результате хроматографирования жидких веществ, как правило, получают в чистом виде такие небольшие количества веществ, которые уже нельзя очищать фракционной перегонкой. Обычно повторным хроматографированием удается и в случае жидких веществ получить химически индивидуальное соединение легче, чем при помощи других методов очистки. При хроматографическом разделении жидких веществ при помощи классической и проточной хроматографии разность температур кипения растворителя и разделяемых веществ должна быть достаточно велика. [c.365]

    Миниатюризация таких методов, как жидкостная хроматография, проточно-инжекционный анализ, газовая хроматография и масс-спектрометрия, обеспечит уменьшение расхода реагентов, технологических издержек и стоимости анализатора. Будущие промышленные анализаторы будут также обладать функцией самоконтроля. По-видимому, будут наблюдаться тенденция широкого использования т-Ипе-сенсоров, развитие оптоволоконной технологии для сочетания методов оптической спектроскопиии с сенсорами зондового типа и развитие неразрушающих методов для устранения проблем пробоотбора. Современные тенденции — развитие аппаратуры удаленного детектирования и микроанализаторной/сенсорной технологии. [c.670]

    Термолиюовую спектроскопию применяют для высокочувствительного определения окрашенных соединений, а также для определения термооптических характеристик растворителей. Кроме того, термолинзовый детектор используют в высокоэффективной жидкостной (колоночной) хроматографии, проточно-инжекционном анализе. Важной областью применения термолннзовой спектроскопии является дистанционный анализ газовых сред (нижние границы определяемых содержаний таких газов как N 2, N0, ЗОз, паров йода составляют 10 —10 % об.). Фототер-мическую рефрактометрию применяют для решения аналогичных задач. Кроме того, вследствие высокого пространственного разрешения фото-термическую рефрактометрию используют в капиллярной хроматографии, методах капиллярного зонного электрофореза и методах локального анализа жидкостей. [c.338]

    В литературе отсутствует общепринятое сокращение электрохимического детектора для проточного анализа. Чаще всего используют начальные буквы названий методов разделения и детектирования, например, высокоэффективная жидкостная хроматография с электрохимическим детектированием ВЭЖХ-ЭХД. [c.566]

    Импульсная установка представляет собой в частном случае сочетание микрореактора с хроматографом. В последние годы стали широко применять импульсные установки с препаративной секцией [24], служащей для выделения индивидуальных веществ, направляемых далее в реактор. Однако условия протекания реакций в импульсном режиме отличаются от условий работы в проточных установках, так как в первом случае в реакции участвуют наиболее активные центры катализатора и происходит доочистка сырья. [c.45]

    Прямое окисление сероводородсодержащего газа (2...4% сероводорода, 1...4% углеводородов С-С , остальное - диоксид углерода) проводили с использованием промышленных катализаторов (табл.4.1) на проточной лабораторной установке со стационарным слоем катализатора. Состав сырья и продуктов реакции определяли методом газожидкостной хроматографии. Окисление сероводорода может идти с образованием либо диоксида серы, либо серы. Активность катапи-заторав оценивали по суммарной конверсии сероводорода, степеням еги превращения в эпементную серу и диоксид серы, а также селективности по элементной сере [2]. [c.100]

    Схема установки для проведения гель-хроматографии привед< на на рис. 18. Анализируемый раствор вносится в верхнюю часть колонки 5 и проходит по колонке с растворителем (водой), подаваемым из сосуда 2. Выходящий из колонки раствор для регистрации фракций полимера (полиэтилеигликоля) смешивается с реагентом (0,01 М раствор иода), который поступает из емкости /. При смещивании образуется окрашенное комплексное соединение. Смесь проходит через проточную кювету 13 фотоэлектроколориметра КР, с помощью котор ого измеряют светопоглощение раствора. Сигнал от фотоколорнметра через щит подается на самопишущий потенциометр 10 (КСП-4). [c.60]

    Метод колоночной хроматографии является более длительным по сравнению с другими хроматографическими методами, но обладает большей производительностью. Его можно применять для качественного обнаружения лишь окрашенных веществ, или веществ поглощающих УФ-излучение. В иных случаях нужно иметь детекторы или цветнь е реагенты. Однако> метод более пригоден для проведения количественных определений, так как использование проточных нагревателей и сборников фракций позволяет применять менее чувствительные методы определения. [c.354]

    Ячейка детектора состоит из чувствительного элемента, помещенного в камеру блока детектора, Ячейки бывают проточными, диффузионными и полудиффузион-пыми (рис, 11.23) в проточной ячейке газовый поток омывает чувствительные элементы, в диффузионной -- газовая смесь поступает к чувствительным элемен- гам за счет диффузии через специальный канал Полудиффузион-ная ячейка является промежуточной между проточной и диффузионной. Детектор с диффузионной ячейкой обладает малой чувствительностью к изменениям скорости потока газа, но уступает детектору с проточными ячейками по чувствительности и быстродействию. В современных универсальных аналитических хроматографах в основном применяются детекторы по теплопроводности с полудиффузионными ячейками. Диффузионные детекторы по теплопроводности используются в препаративных хроматографах. [c.46]

    Все ионизац. Г. содержат проточную ионизац. камеру (как на рис. 13), на электроды к-рой налагают определенную разность потенциалов. Эти приборы широко применяют для контроля микропримесей в воздухе, а также в кач-ве детекторов в газовых хроматографах. Ниже рассмотрены наиб, распространенные типы ионизац. Г., используемые без предварительного хроматографич. разделения пробы. [c.459]

    Методы анализа, применяемые в контроле пронз-ва, должны быть экспрессными и непрерывными (напр., редокс-метрия, рН-метрия, спектрофото.метрия). В основе методик контроля процессов произ-ва орг. в-в часто лежит определение исчезающей функц. группы, т.е. группы, подвергающейся превращению на данной стадии произ-ва, что позволяет точно фиксировать конец соответствующей стадии. При этом широко используют тонкослойную, газо-жид-костную, высокоэффективную жидкостную хроматографию, спектрофотометрию, электрохим. методы, проточно-ин-жекц. анализ. [c.403]

    Одна из основных тенденций в развитии электрохимического анализа - миниатюризация электрохимических ячеек и электродов. Во многом это связано со все более широким применением электрохимических детекторов в проточных методах анализа, в частности, в высокоэффективной жидкостной хроматографии и капиллярном зонном электрофорезе, а также с внедрением в практику измерительных устройств на основе ультрамикроэлектродов (УМЭ). Указанные электроды, благодаря наличию у них комплекса уникальных свойств, представляют интерес не только для специалистов в области электрохимического анализа, но и для более широкого круга исследователей. [c.94]

    В последнем случае компоненты смеси детектируются по зонам. К числу таких методов относятся высокоэффективная жидкостная (ВЭЖХ) и ионная хроматография (ИХ), проточно-инжекционный анализ (ПИА), капиллярный зонный электрофорез (КЗЭФ) и др. Независимо от природы аналитического сигнала и метода его измерения детектор должен удовлетворять следующим требованиям  [c.565]

    Одно из преимуществ проточной хроматографии состоит в том, что порядок работы не зависит от перемещения адсорбционных зон. Для получения информации о ходе разделения смеси можно воспользоваться теми же способами, что и при хроматографии по методу Цвета (см. стр. 360). СЗднако в данном случае обнаружение адсорбционных полос вовсе не является обязательным условием успешной работы. Достаточно отобрать возможно [c.363]


Смотреть страницы где упоминается термин Хроматография проточная,: [c.135]    [c.92]    [c.92]    [c.139]    [c.152]    [c.282]    [c.442]    [c.693]    [c.200]    [c.413]    [c.213]    [c.220]    [c.186]    [c.79]    [c.362]    [c.363]   
Лабораторная техника органической химии (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Детекторы в гель-хроматографии проточный вискозиметр

Жидкостная хроматография ядерный проточная ячейка

Жидкостная хроматография ядерный проточный зонд ЯМР

Определение степени разветвленности и ММР разветвленных полимеров с помощью комбинации скоростной седиментации и эксклюзионной хроматографии с использованием проточного автоматического вискозиметра

Применение колоночной хроматографии для непрерывного анализа в проточной системе

Проведение проточной хроматографии

Проточная непрерывная тонкослойная хроматография

Проточная хроматография (Дж. Беке)

Проточные системы для регистрации активности в колоночной хроматографии

Проточный амперометрический детектор жидкостной хроматографии

Тонкослойная хроматография ТСХ проточная



© 2025 chem21.info Реклама на сайте