Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ, регуляция

    Миозин, будучи АТФазой, относится к числу так называемых энергопреобразующих ферментов, так как при его непосредственном участии осуществляется трансформация энергии химических связей в механическую работу. Для ферментов такого типа характерна тесная связь катализа с конформационными перестройками. За счет этога возможна регуляция активности фермента путем воздействия на группы, не входящие непосредственно в активный центр, а также при воздействии на него веществ, влияющих на конформацию белка. Совершенно очевидно, что субстрат (АТФ) должен в большинстве случаев оказывать защитное действие, стабилизируя структуру в области активного центра. [c.398]


    В третьей части книги (гл. 6—8) обсуждаются общие свойства ферментов, вопросы кинетики химических реакций и различные механизмы ферментативного катализа. В гл. 6 достаточно подробно изложены основы ферментативной кинетики, а также рассмотрены механизмы регуляции ферментативных реакций в клетках. В гл. 7 дана рациональная система классификации ферментативных реакций, включающая сведения о различных ферментах и методике их исследования. Гл. 8 посвящена химическим свойствам и специфической роли коферментов, причем эти свойства рассматриваются в связи с типами реакций, описанными в предыдущих главах. В этих главах много справочного материала, и их можно не читать целиком. Для студентов и преподавателей будет совсем нетрудно разобраться в изложенном здесь материале и применять его. При желании эту часть книги можно легко объединить с материалом гл. 2, где обсуждаются свойства белков, углеводов, нуклеиновых кислот и липидов. [c.8]

    Активный, нли каталитический, центр фермента — это сравнительно небольшой участок молекулы белка. Аминокислотный состав остальной части молекулы, особенно тех ее участков, которые находятся на поверхности структуры, может довольно сильно меняться в результате мутаций без изменения каталитической активности фермента. Тем не менее присоединение к различным участкам поверхности фермента других молекул может косвенно повлиять на катализ. В концентрированных растворах, каким является цитоплазма, молекулы могут агрегировать. Присоединение какой-либо молекулы к определенному участку на поверхности фермента способно изменить его структуру и в свою очередь вызвать увеличение или уменьшение каталитической активности. Так, при избыточном накоплении продукта какого-либо метаболического пути ингибитор, действующий по принципу обратной связи, взаимодействует указанным образом с ферментами и выключает их. Взаимодействия такого рода составляют один из распространенных способов регуляции. [c.64]

    Регуляция действия ферментов и теория энзиматического катализа. [c.18]

    Огромное значение для регуляции работы систем биохимических процессов имеет пространственная организация этих систем. Уже в пределах клеток эукариот многие процессы пространственно разобщены, поскольку происходят в различных органеллах. Распределение биохимических процессов по отдельным участкам клеток (компартментализация) будет рассмотрено в 10.4. Уже этот вопрос выходит за рамки собственно биохимии и является в большей мере предметом клеточной биологии. Еще дальше от биохимии отстоят более высокие уровни пространственного разобщения биологических процессов по разным органам многоклеточных организмов. Так, уже говорилось о регуляторной роли эндокринной и нервной систем. Их изучение является в первую очередь предметом физиологии, которая в последние десятилетия превратилась из описательной науки в область знания, прочно опирающуюся на сведения о биохимических и биофизических процессах, протекающих в животных и растениях. Тем не менее, чтобы дать читателю некоторое представление о взаимосвязи физиологических и биохимических процессов, в 10.5 вкратце рассматривается вопрос о биохимических аспектах мышечного сокращения - один из первых физиологических вопросов, в котором такое сложное явление, как превращение химической энергии в сокращение мышц, было в значительной мере осмыслено на основе биохимических концепций, таких, как ферментативный катализ и конформационные переходы. [c.421]


    В учебнике на современном научно-теоретическом уровне изложен материал по структурной и метаболической биохимии. Особое внимание уделено полифункциональности белков и их роли в обеспечении специфических биохимических процессов и физиологических функций организма, а также динамическим аспектам ферментативного катализа. Приведены новые данные о регуляции метаболизма и экспрессии генов, биохимии иммунитета, а также клеточной и генной инженерии. [c.2]

    Современная теория этого типа регуляции биологической активности вытекает из представления о гибкости белковых молекул и их способности изменять свои размеры и форму за счет изменения взаимодействия между субъединицами. Предыдущая теория ферментативного катализа была основана на диаметрально противоположной точке зрения. Эта концепция, казавшаяся весьма плодотворной в течение шестидесяти лет, рассматривала активный центр ферментов как определенным образом сконструированный участок, где мог расположиться только субстрат или какие-нибудь другие молекулы, имеющие соответствующие размеры и форму. Эти молекулы, которые могут занимать активный центр ферментов, но не вступают в реакцию, называли конкурентными ингибиторами. При описании этого явления часто пользовались аналогией ключ — замок , но, может быть, основная идея о наличии жесткого контура белковой структуры, не допускающего в активный центр молекулы, отличающиеся от субстрата по размерам или форме, лучше иллюстрируется сравнением с головоломкой, в которой картинка получается в результате складывания отдельных точно пригнанных кусочков. [c.57]

    Н е й ф а X С. А. Динамическая структура внутриклеточных механизмов и регуляция активности ферментов гликолиза в клетке. В кн. Механизм и кинетика ферментативного катализа. Изд-во Наука М., 1964. [c.290]

    Белки (протеины) — непременный компонент всех живых организмов — растительных, животных и бактериальных. Они играют важнейшую роль в клеточной архитектуре, в катализе, в регуляции метаболизма, в сократительных процессах и в реакциях, обеспечивающих высшим организмам защиту от болезнетворных агентов. Таким образом, белки имеют непосредственное отношение к подавляющему большинству событий на физиологическом уровне (заметим, что название протеин образовано от греч. про-тос — первичный). [c.40]

    Примерно до 1955 г. основные усилия биохимиков были направлены на выявление различных компонентов метаболической машины клетки, и вопрос о способах интеграции бесчисленных реакций, протекающих в клетке, привлекал мало внимания. Только в последние 10—15 лет биохимия начала придавать особое значение тому обстоятельству, что последовательности биохимических реакций функционально связаны между собой и взаимно регулируются. Главный факт, который выяснился в результате этих новых исследований, состоит в том, что регуляция осуществляется с помощью целой иерархии механизмов, заложенных в генах и реализующихся синтезом соответствующих белков. Поскольку практически все клеточные реакции катализируются ферментами, регуляция метаболизма сводится к регуляции типа и интенсивности ферментативных функций. Интенсивность катализа, как теперь уже ясно, может регулироваться только двумя основными способами  [c.15]

    Благодаря новейшим данным о стереохимических изменениях, происходящих при ферментативном катализе и регуляции активности ферментов, мы можем ответить на эти вопросы с достаточной определенностью. В том, что структура белков существенно зависит от слабых связей, действительно есть больщой смысл . Взаимодействие ферментов с субстратами и с модуляторами ферментов в большинстве случаев, если не всегда,, сопровождается изменениями в третичной и четвертичной структуре фермента. С точки зрения стереохимии эти изменения могут быть большими или незначительными для биологической, функции они абсолютно необходимы. Скорость, с которой фермент катализирует определенную химическую реакцию, вероятно, зависит от того, насколько быстро его конформация может подвергнуться обратимому изменению в результате фер-мент-субстратных взаимодействий. Надлежащая реакция фермента на присоединение регулирующего метаболита тоже зависит от способности фермента изменять свою структуру высшего порядка. В одних случаях эти изменения затрагивают третичную конформацию фермента, в других (например, в случае гликогенфосфорилазы) регуляторный эффект связан с изменением четвертичной структуры. [c.215]

    Таким образом, структурная гибкость белков существенна как для самого катализа, так и для регуляции его интенсивно- [c.215]

    Наиболее четкими примерами щелевого изменения химических свойств реагентов может служить изменение энергии связи кислорода с железом в миоглобине и гемоглобине. Сюда относятся как принудительная ориентация молекулы Ог параллельно плоскости гема, что понижает в нужной степени энергию связи, так и способ регуляции энергии связи Ог с гемом в гемоглобине по мере насыщения гемоглобина кислородом. Другим примером, уже непосредственно из области катализа, может служить промежуточное соединение, образующееся при гидролитическом действии лизоцима на мукополисахариды. [c.275]


    С учетом новейших достижений в области биохимической науки тщательно отобран материал по ферментативному катализу, витаминам, нуклеиновым кислотам, гормонам, процессам переноса наследственной информации в живых организмах, биоэнергетике, метаболизму основных классов жизненно необходимых соединений, нейроэндокринной регуляции биохимических процессов и др. Рассмотрены некоторые аспекты фото- и хеморецепции, биохимии нервной, мышечной и иммунной систем, а также прикладные направления биохимической науки. Цель учебного пособия — формирование у будущих специалистов представлений о фундаментальных достижениях в изучении химических основ жизни и развитии исследований в этой области научного знания. [c.2]

    Не следует, однако, думать, что протеолиз интересен лишь как наиболее изученный пример ферментативного катализа. Биологическая важность этого процесса долгое время недооценивалась, и лишь только в последние годы стало ясно, что протеолиз играет решающую роль в регуляции большинства физиологических процессов, происходящих в организме. Пожалуй, именно этот аспект изучения протеолиза превалирует в публикациях последних лет. [c.4]

    Ф. широко иримен. в нищ. иром-сти (хлебопечении, виноделии, пивоварепии, сыроделии, произ-ве чая, уксуса, спирта), микробиол. и фармацевтич. пром-сти, в медицине. См. также Ферментативных реакций кинетика. Ферментативный катализ, Регуляция ферментов. в Фершт Э., Структура н механизм действия фермевтов, пер. с аигл., М., 198U Диксов М., Уэбб Э., Ферменты, пер. е англ., т. 1 — 3, М., 1982. В. К. Антонов. [c.618]

    Ф. широко примен. в пшц. пром-сти (хлебопечении, виноделии, пивоварении, сыроделии, произ-ве чая, уксуса, спирта), микробиол. и фармацевтич. njpoM-сти, в медицине. См. также Ферментативных реакции кинетика, Ферментативный катализ. Регуляция ферментов. [c.618]

    В трехтомном нзланин, написанном учеными США, на самом современном уровне изложены основные прел-ставлення о биологических макромолекулах и методах исследования их структуры и функций. В третьем томе приведены материалы по термодинамике и кинетике аэаимодействня биополимеров друг с другом и с низкомолекулярными лигандами, основам ферментативного катализа, регуляции биологической активности биополимеров, кои-формационным превращениям нуклеиновых кислот и белков, а также по динамике мембранных структур. Кинга написана ясно и четко, на очень высоком научном уровне. [c.4]

    Характер Б определяется наследств информацией, закодированной в генетич аппарате организма Все р-ции в клетке катализируются специфич биокатализаторами-ферментами Благодаря особым механизмам регуляции они обеспечивают строгую направленность Б Важная особенность ферментативного катализа -стереоспецнфичность, к-рая обусловливает образование только определенных стереоизомеров Многие в-ва синтезируются в результате не одной, а неск последовательных р-ций, катализируемых разл ферментами или многоферментными комплексами Такие р-ции составляют путь Б того или иного в-ва Во мн случаях родственные соед синтезируются из одних и тех же исходных в-в-предшественников, напр все стероидные гормоны образуются из холестерина [c.289]

    Принимая во внимание все возрастающий объем биохимической информации, многие разделы пришлось заново написать или существенно переработать например, о структуре и функциях белков и нуклеиновых кислот, регуляции экспрессии генов, молекулярных механизмов биогенеза ДНК и РНК, биосинтеза белка, механизмах регуляции метаболизма и роли гормонрецепторной системы и вторичных внутриклеточных мессенджеров в передаче нервного и гуморального сигналов, механизмах ферментативного катализа, особенностях обмена веществ в нервной ткани (нейрохимия), печени, мышечной и соединительной тканях и др. [c.12]

    Горизонты энзимологии. В литературе появляются работы, в которых делаются попытки прогнозирования дальнейшего развития энзимологии на ближайшее десятилетие. Перечислим основные направления исследований энзимологии будущего. Во-первых, это исследования более тонких деталей молекулярного механизма и принципов действия ферментов в соответствии с законами югассической органической химии и квантовой механики, а также разработка на этой основе теории ферментативного катализа. Во-вторых, это изучение ферментов на более высоких уровнях (надмолекулярном и клеточном) структурной организации живых систем, причем не столько отдельных ферментов, сколько ферментных комплексов в сложных системах. В-третьих, исследование механизмов регуляции активности и синтеза ферментов и вклада химической модификации в действие ферментов. В-четвертых, будут развиваться исследования в области создания искусственных низкомолекулярных ферментов —синзимов (синтетические аналоги ферментов), наделенных аналогично нативным ферментам высокой специфичностью действия и каталитической активностью, но лишенных побочных антигенных свойств. В-пятых, исследования в области инженерной энзимологии (белковая инженерия), создание гибридных катализаторов, сочетающих свойства ферментов, антител и рецепторов, а также создание биотехнологических реакторов с участием индивидуальных ферментов или полиферментных комплексов, обеспечивающих получение и производство наиболее ценных материалов и средств для народного хозяйства и медицины. Наконец, исследования в области медицинской энзимологии, основной целью которых является выяснение молекулярных основ наследственных и соматических болезней человека, в основе развития которых лежат дефекты синтеза ферментов или нарушения регуляции активности ферментов. [c.117]

    Наибольший прогресс в Б. в 70-х гг. достигаут при исследовании молекулярных основ энергетич. процессов (П. Митчелл), механизмов регуляции клеточных процессов и установлении роли циклич. аденозинмонофосфата (Е. Сазерленд), а также в разработке осн. положений теории ферментативного катализа (В. Дженкс, Д. Кошланд, А. Е. Браун-штейн и др.) и установлении принципиальных схем обмена в-в (карты метаболизма). [c.76]

    В связи с этим перед наукой уже давно возникла проблема изучения механизма ферментативного катализа, имеющая много аспектов. С точки зрения биологии познание сущности ферментативных реакций весьма важно для понимания сложных процессов обмена веществ, их связи с физиологическими функциями организмов и регуляции. Потребности современной медицины диктуют необходи- [c.5]

    Аллостерическая регуляция осуществляется воздействием не на активный центр молекулы Б, а на другой (аллостерич.), посредством к-рого осуществляется регуляция яктивного центра, напр, активация присоединения кислорода к гемоглобину. Гемоглобин пока единственный Б, с четвертичной структурой для к-рого определена структура с разрешением 0,3 нм (3 А) Этот Б. состоит из двух пар субъединиц (а- и Р-цепи), каждая из к-рых по своей третичной структуре практически идентична миоглобину и имеет такой же, как в миоглобине, активный центр. Присоединение первой молекулы кислорода активирует присоединение молекул кислорода к остальным трем атомам железа гем-групп др, субъединиц. Зависимость насыщения кислорода от его парциального давления имеет S-образный вид. Как показал Перутц (1960), присоединение и отдача кислорода сопровождается существенными кон-формационными изменениями четвертичной структуры — смещением субъединиц на расстояние порядка 0,7 пм (7 А) Родственный гемоглобину миоглобин, не имеющий четвертичной структуры, подобным свойством не обладает Второй сравнительно хорошо изученный пример аллостерич. Б.— фермент аспартаткарбамоилтрансферааа — первый фермент в цепи реакций биосинтеза пиримидиновых производных. Этот фермент (мол. масса 300 ООО) состоит из двух субъединиц с мол. массой 90 ООО, осуществляющих катализ, и четырех регуляторных субъединиц с мол. массой по 30 ООО. Конечный продукт указанной цепи реакций (цитидинтрифосфат) взаимодействует с регуля-торйыми субъединицами, в результате чего активность фермента снижается и вся цепь реакций прекращается (регуляция по типу обратной связи). [c.123]

    Очевидно, что для выявления ключевых стадий вероятного механизма каталитического действия фермента существенно количественное описание металл-лигандного центра как до, так и после связывания субстрата. Поэтому необходимо знать стереохимию координационного окружения иона металла и его ориентацию относительно ближайших аминокислотных остатков, вовлекаемых в связывание субстрата. Кроме того, детальное выяснение химической природы реакционной способности иона металла в ферментах тре- бует установления корреляции между молекулярной структурой, . Гч стереохимией, электронной структурой и биологической функцией. Описание принципиального механизма стадий ферментативной реакции на основе сведений о структуре должно соответствовать результатам кинетических исследований, указывающих на срод-ство к субстратам, вероятную природу промежуточных продуктов реакции и лимитирующие стадии. Предлагаемый механизм должен также находиться в согласии со спектроскопическими данными, которые характеризуют электронные и атомные перегруппировки, включающие фермент и молекулы субстрата. Как и в простых координационных комплексах, детальная информация о строении молекулы позволяет определить электронную структуру и характер связывания ионов металлов и лигандов в белках. Кроме того, характер изменении стереохимии металл-лигандных центров в ходе катализа позволяет понять, какие изменения электронной структуры ответственны за каталитическое действие. Исходя из этого, большое значение для понимания регуляции биологической активности и функции белков приобретает взаимосвязь между молекулярной структурой, стереохимией и электронной структурой центров координации металла. Экспериментальные средства, при по-мошл которых это понимание становится возможным, основываются на точном, детальном описании структуры белковой молекулы и [c.17]

    Итак, мы видим, что существуют три основных этапа, на уровне которых мог бы регулироваться ферментативный катализ. Который из них имеет наибольщее значение А priori можно было бы думать, что для регуляции используются все три этапа, так как все они могли бы влиять на скорость, с которой происходит обработка субстрата ферментом. В действительности же почти во всех изученных случаях регуляторная функция связана главным образом, если не исключительно, с начальным этапом реакции — образованием фермент-субстратного комплекса. [c.20]

    Наконец, последний аспект фосфофруктокиназного катализа, повышающий точность регуляции активности ФФК в мышце, касается сродства между ферментом и субстратом. Так, мышечная ФФК обладает в 2—3 раза большим сродством к субстрату — фруктозо-6-фосфату, чем аналогичные ферменты из других тканей поэтому при физиологических условиях она [c.49]

    Важно подчеркнуть, что, хотя известные нам обходные пути приводят в физиологическом смысле к обращению прямых гликолитических реакций, в химическом отношении это, конечно, совершенно разные реакции. При этом существование, например, фруктозодифосфатазы и фосфофруктокиназы в одном и том же компартменте клетки создает здесь потенциальную возможность короткого замыкания как в обмене углеродсодержащих соединений, так и в энергетическом обмене одновременное функционирование обоих ферментов приводило бы к бесполезной циркуляции углерода с затратой АТФ. Очевидно, что в тканях, осуществляющих глюконеогенез, регуляция активности этих двух ферментов должна быть тесно интегрирована. Совершенно аналогичная проблема замыкания возникает всегда и везде, если два противоположно направленных пути реакций оказываются в одной клетке. Взаимопревращения глюкоза глюкозо-6-фосфат и фосфоеиолпируват пируват — вот еще два примера той же проблемы замыкания обмена углерода и энергии в таких тканях, как печень и почка. Все подобные проблемы разрешаются в принципе одинаково внутриклеточные условия, благоприятствующие катализу в катаболиче-ском направлении, весьма неблагоприятны для катализа в анаболическом направлении, и наоборот. [c.55]

    Как мы уже говорили, количественная стратегия связана с рядом важных ограничений. Прежде всего, рассматривая эту стратегию, мы молчаливо подразумевали, что имеющиеся в клетке типы ферментов будут удовлетворительно работать и при новом температурном режиме. Однако в свете того, что было сказано в разделе I о гермолабильности высших уровней структуры белка и о взаимодействии белков и лигандов, это предположение вряд ли будет верно в отношении всех ферментов. Отсюда вытекает один априорный довод в пользу качественной стратегии, т. е. использования различных вариантов одного и того же фермента при разных температурах весьма вероятно, что один-единственный вариант не будет достаточно эффективным во всем диапазоне температур, при которых должны осуществляться катализ и регуляция. Этот довод относится к компенсации температурных эффектов во всех трех масштабах времени. [c.252]

    Напомним, что параметры сродства могут использоваться для регуляции интенсивности катализа только при ненасыщающих [c.263]

    Настоящий справочник отличается от имеющихся тем, что в нем не только описана химическая структура и биологическая роль основных биохимических компонентов живой клетки, но и охарактеризованы пути метаболизма данных компонентов в живом организме. Он состоит из семи разделов, в каждом из которых в алфавитном порядке дана соответствующая тepминoлorиЯi В разделах Белки , Нуклеиновые кислоты , Углеводы , Липиды приведены структурные формулы и показана биологическая роль биохимических компонентов клетки, описаны и проиллюстрированы схемами основные пути распада и синтеза важнейших биологически активных молекул. В разделе Ферменты содержатся сведения о типах ферментативного катализа, скорости ферментативных реакций, единицах измерения ферментативных реакций, о принципах классификации ферментов, регуляции биосинтеза и активности ферментов. Раздел Витамины включает характеристику отдельных представителей водо- и жирорастворимых витаминов. Особое внимание уделено ферментным реакциям, в которых участвуют витамины, приведены данные о содержании витаминов в продуктах питания, о суточной потребности человека в витаминах, о применении витаминов и витаминных препаратов в медицинской практике, сельском хозяйстве и т. д. В разделе Гормоны -освещены достижения по биохимии пептидных, белковых и стероидных гормонов. Рассмотрены вопросы биосинтеза, механизм действия гормонов на молекулярном уровне, взаимодействие гормонов с [c.3]

    Общая схема фрементативного катализа, предложенного Л. Михаэлисом, состоит, как известно, из следующих стадий образование фермент-субстратного комплекса ES, превращение субстрата в продукт Р, наконец, десорбация продукта с фермента и восстановление последнего в первоначальное состояние Е. В гл. I - IV были рассмотрены вопросы кинетики и регуляции ферментативных реакций, протекающих по уравнению [c.419]

    Многие белки при связывании с ДНК изгибают ее, а если подобных ДНК-белковых связей много, то нить ДНК может сформировать плотную спираль вокруг белкового комплекса с образованием нуклеопротеиновой частицы Известно, что у бактерий такие нуклеопротеиновые частицы образуются при связывании инициаторных белков с точкой начала репликации (см. разд. 5.3.9), а также при связывании ДНК с интегразой фага лямбда для катализа сайт-специфической рекомбинации (рис. 9-19). По-видимому, в таком сложном трехмерном соединении участвуют как конкурентное, так и кооперативное взаимодействия Аналогичные гипы взаимодействий используются при регуляции каталитической активности нуклеопротеиновых частиц, как показано на примере белкового комплекса, содержащего интегразу фага лямбда (рис. 9-20). В связи с тем, что при экспрессии эукариотических генов происходит связывание кластеров белков, регулирующих активность генов, [c.109]

    Н.К. Наградова и В.И. Муронец [235], говоря о важности доменной организации белковых молекул, идут дальше. Они считают, что образование доменов является общим принципом формирования трехмерных структур ферментов, которые только благодаря этому обретают возможность осуществлять биокатализ. Стало очевидно — пишут они, — что основные свойства ферментов, обеспечивающие как реализацию катализа, так и регуляцию его эффективности, в той или иной степени определяются их мультидоменной структурой [235. С. 7]. Поскольку известно много однодоменных ферментов, то такое обобщение вряд ли можно считать очевидным. [c.309]


Смотреть страницы где упоминается термин Катализ, регуляция: [c.262]    [c.68]    [c.68]    [c.126]    [c.338]    [c.4]    [c.24]    [c.24]    [c.131]    [c.339]    [c.9]    [c.376]    [c.56]    [c.123]    [c.2]    [c.4]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.261 , c.262 , c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2025 chem21.info Реклама на сайте