Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глава Вирусы

    Как отмечено в предыдущих главах, вирусы гриппа могут быть разделены на три типа А, В и С. Все штаммы одного типа имеют в своем составе дающие перекрестные серологические реакции белки М и NP, которые являются главными компонентами вируса. Из трех типов вирусы гриппа типа А — наиболее актуальные возбудители заболеваний у людей, так как с ними связаны пандемии гриппа. [c.313]


    Описанные выше схемы репликации ДНК-гено.мов включают почт весь набор основных элементов (блоков), нз которых построены репликационные системы и других ДНК-содержащих вирусов (если не считать стоящие особняком способы репликации ДНК с участием механизмов обратной транскрипции с.м, раздел 3 этой главы). Однако комбинироваться эти блоки могут в разных сочетаниях. [c.280]

    В результате химического изучения вирусов растений было показано, что они состоят главным образом из белков и нуклеиновых /смс-лот —веществ, природа которых рассмотрена в данной и последующей главах. Вирусные частицы или гигантские молекулы — с молекулярной массой порядка 10 000 000 —можно описать как агрегаты меньщих мо лекул, связанных между собой определенным образом. [c.383]

    Вторая часть книги (гл, 4 и 5) посвящена проблеме соединения биологических молекул друг с другом. В гл. 4 рассмотрены количественные параметры связывания для различных структур — олигомерных ферментов, микротрубочек, вирусов, мышц, что составляет одно из самых современных направлений биохимии. Дается также систематизированный количественный анализ аллостерических эффектов. В гл. 5 описаны структура и химические свойства клеточных мембран и оболочек. Основная цель этой и других глав состоит в том, чтобы дать студентам возможность приобрести запас знаний, достаточный для чтения специальной периодической литературы без помощи учебников. [c.8]

    Методы выделения нуклеиновых кислот. При изучении химического состава и строения нуклеиновых кислот перед исследователем всегда стоит задача выделения их из биологических объектов. В главе 2 было указано, что нуклеиновые кислоты являются составной частью сложных белков — нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений. Нуклеиновые кислоты обладают сильно выраженными кислыми свойствами (обусловлены остатками ортофосфорной кислоты в их составе) и при физиологических значениях pH несут отрицательный заряд. Этим объясняется одно из важных свойств нуклеиновых кислот—способность к взаимодействию по типу ионной связи с основными белками (гистонами), ионами металлов (преимущественно с М "), а также с полиаминами (спермин, спермидин) и путресцином. Поэтому для вьщеления нуклеиновых кислот из комплексов с белками необходимо прежде всего разрушить эти сильные и многочисленные электростатические связи между положительно заряженными молекулами белков и отрицательно заряженными молекулами нуклеиновых кислот. Для этого измельченный путем [c.96]


    Обнаружение вирусов в организме лабораторных животных. Способы обнаружения вируса в организмах чувствительных животных различаются в зависимости от вида животного и типа вируса и будут рассмотрены в главах, посвященных диагностике отдельных инфекций. [c.270]

    Строение клетки определяется теми веществами, из которых образованы стенки клетки, представляющие ее каркас, и веществами, находящимися внутри клеток. Целлюлоза, описанная в предшествующей главе, является наиболее важной составной частью стенок клеток растений. В живых организмах основными конструктивными материалами являются белки более того, и внутренние части клеток состоят в значительной степени пз белков. Так, красная кровяная клетка состоит из тонкой мембраны, в которой заключена среда, состоящая из воды (60%), различных веществ (5%) и гемоглобина (35%) — белка, содержащего железо, и имеющего молекулярный вес около G8 ООО гемоглобин обладает свойством обратимо связывать кислород. Именно благодаря этому свойству кровь соединяется с большим количеством кислорода в легких и переносит его к тканям, обеспечивая таким образом возможность окисления питательных веществ и веществ, входящих в состав организма. Ранее уже упоминалось, что простейшие формы материи, способные к самовоспроизводству — вирусы, состоят главным образом из нуклеиновых кислот. [c.480]

    Нуклеиновые кислоты способны образовывать комплексы с некоторыми белками, обладающими основными свойствами, причем подобные комплексы ведут себя как функциональные единицы. ДНК обычно образует комплексы с протаминами и гисто-нами. Вирусы также можно считать комплексами ДНК или РНК с определенными белками. Размножение вирусов происходит только в живых клетках хозяина. Нуклеиновая кислота вируса определяет его наследственные свойства, а белковая оболочка — тип клеток, заражаемых данным вирусом. Например, вирус полиомиелита заражает только человека и обезьяну, но, выделив из него РНК, можно инфицировать ею также клетки мышей и куриных эмбрионов. В состав многих клеток входят рибосомы — частицы, состоящие из РНК и белка, которые играют важную роль в синтезе белков. Ниже мы остановимся на каждом из этих нуклеопротеидов подробнее, а в конце главы рассмотрим роль нуклеиновых кислот при синтезе белка. [c.357]

    Глава 15. ОПРЕДЕЛЕНИЕ КИШЕЧНЫХ ВИРУСОВ В ВОДЕ ОТКРЫТЫХ ВОДОЕМОВ [c.276]

    Хотя со времени появления первого издания прошло только семь лет, понадобилась значительная переработка с тем, чтобы включить в книгу все наиболее существенные новые данные. За это время возник ряд совершенно новых и очень важных областей исследования, которые развивались очень быстро, а некоторые даже бурно. Это касается, в частности, генетических исследований бактерий и бактериофагов. Хотя вопрос о том, можно ли считать бактериофаги и другие вирусы живыми организмами, остается открытым, они, во всяком случае, обладают генетической структурой, которую удалось изучить очень детально. Эти неожиданные достижения вместе со сходными результатами, полученными на бактериях и других микроорганизмах, значительно уточнили наши сведения о единицах наследственности. Изучение природы генов и их способности к самовоспроизведению было также в большой степени стимулировано моделью строения нуклеиновых кислот, предложенной Уотсоном и Криком. Поэтому бактериям, бактериофагам и природе гена в настоящей книге посвящены специальные главы. Может показаться, что значение этих областей исследования несколько преувеличивают, однако многие данные, которые в настоящее время кажутся новыми и гипотетичными, возможно, скоро войдут в основы генетики. [c.14]

    Как же тогда быть с утверждением, которым мы начали эту главу Мы ведь утверждали, что без обмена нет наследственности, а без наследственности нет обмена. Все это по-прежнему остается правильным. Раз вирусы имеют потомство, которому они передают свои наследственные зачатки, будучи в то же время неспособными к обмену, они должны одолжить его у кого-нибудь. Недаром вирусы сравнивают с пиратами они берут на абордаж купеческое судно (бактериальную клетку) и подчиняют себе его курс (обмен веществ), заставляя его работать на себя. Если говорить более серьезно, вирусы ведут себя как кучка блуждающих генов. В пораженной клетке они переключают ее собственный обмен веществ на производство вирусных частиц, а вне клетки они представляют собой ничего не значащие, инертные вещества . [c.144]

    Конечно, мы не сможем здесь перечислить и описать все подобные защитные механизмы нам поневоле придется себя ограничить. Речь в этой главе пойдет только о биологических приспособлениях против инфекций, причем главным образом о таких, которыми располагает организм человека, как, впрочем, и организм почти каждого позвоночного. Это прежде всего кожа, непроницаемая для бактерий и вирусов волосяной покров различные выделения — кожное сало, слезная жидкость, которая буквально вымывает инородные тела, слюна и особенно желудочный сок, который разрушает, расщепляет массу чужеродных веществ, в результанте чего они теряют свою активность. [c.319]


    Чтобы завершить общую классификацию упорядоченных полимерных систем, которые непосредственно или условно могут быть отнесены к жидкокристаллическим системам, следует напомнить об упоминавшихся в предыдущей главе организованных коллоидных системах, обозначенных термином тактоиды . Асимметричные надмолекулярные образования, способные давать упорядоченные структуры, встречаются не только среди неорганических систем. Кроме указанного ранее вируса табачной мозаики можно было бы отметить и водные дисперсии продуктов дозированного гидролиза целлюлозы 17]. Этот материал представляет собой кристаллиты целлюлозы, образующиеся после разрушения более доступной аморфной части целлюлозного материала. Кристаллиты, выделенные при гидролизе, резко асимметричны по форме и образуют в водной среде своеобразные по свойствам систе.мы. Их поведение. может быть описано с позиций перехода взвеси в анизотропную систему. [c.38]

    В связи с возможностью перехода белковых систем в жидкокристаллическое состояние необходимо отметить две группы систем. Первая группа — это растворы и дисперсии белковых тел, имеющих асимметричное строение. К ним, в частности, относятся упоминавшиеся в предыдущих главах дисперсии вируса табачной мозаики, которые уже при низких концентрациях образуют тактоиды, причем этот переход подчиняется количественным закономерностям, выведенным Флори. [c.221]

    Болезнь живого организма возникает вследствие нарушения нормальной деятельности каких-либо клеток в организме. Нарушения нормальной деятельности клеток вызываются неблагоприятным действием внешней среды или вследствие проявления некоторых наследственных признаков. Причинами болезни могут быть механическое воздействие (ушибы, ранения), проникновение в организм бактерий и вирусов (инфекционные заболевания), действие радиации (лучевая болезнь) и химических ядовитых веществ. У человека болезни могут появляться в результате психических расстройств. Механизм действия этих факторов на организм различен. Действие радиации было рассмотрено раньше (глава 13). Ядовитые химические вещества воздействуют на ферментные системы клеток, нарушая обмен и передачу нервных импульсов. Болезнетворные микроорганизмы вырабатывают токсины, которые действуют на клетку, подобно химическим ядам. Причиной большого числа заболеваний (грипп, простуда, полиомиелит, оспа и др.) являются вирусы. Проникнув [c.376]

    Время жизни т флуоресцирующей молекулы в возбужденном состоянии находится в интервале Ю — 10" сек. Следовательно, любой релаксационный процесс, протекающий поблизости от флуоресцирующей молекулы, может быть изучен в этот промежуток времени. Большинство описанных в этой главе методов, использующих флуоресцентную технику, заключается в определении соотношения времени жизни т флуоресцирующей молекулы в возбужденном состоянии и времени релаксации р полимерной системы. Времена релаксации полимерных систем лежат в области от 10 сек до нескольких секунд или даже часов. Небольшие движения сегментов гибких полимерных цепей в растворе характеризуются величинами р от 10 до 10" сек. Такие процессы относятся к области микроброуновского движения. С другой стороны, вращательное движение изолированной макромолекулы как целого описывается временами релаксации, меняющимися от 10" сек для таких компактных макромолекул, как яичный альбумин, до 10" сек и больше для полимеров с жесткими палочкообразными цепями. Времена релаксации гибких изолированных макромолекул как целого находятся в промежутке между этими экстремальными значениями. В случае гибких или вытянутых полимерных молекул межмолекулярное взаимодействие растет с увеличением концентрации и оказывается заметным даже при низких концентрациях. Для жестких вытянутых макромолекул, подобных вирусу табачной мозаики, имеется критическая концентрация, при которой происходит резкое фазовое расслоение, так что одна фаза оказывается высокоориентированной, а вторая представляет собой беспорядочно перепутанные жесткие цепи [3]. Критическая концентрация, наблюдаемая для гибких молекул, зависит от молекулярного веса и соответствует началу перекрывания доменов полимерных цепей. Дальнейшее увеличение концентрации приводит к перепутыванию [c.169]

    Вводные главы содержат описание физических свойств ионизирующих излучений, важных для понимания их биологических действий, а также описание химических явлений, возникающих под влиянием этих излучений. Последующие главы книги посвящены рассмотрению действий излучений на вирусы, ионы и хромосомы высших клеток. В заключительной главе рассматривается вопрос о гибели клеток при воздействии излучений, насколько он может быть понят из предыдущих глав. [c.5]

    ГЛАВА IV ИНАКТИВАЦИЯ ВИРУСОВ ОБЛУЧЕНИЕМ [c.84]

    В то время Луриа занимался в основном размножением бактериальных вирусов (бактериофагов, или, короче, фагов). Уже в течение нескольких лет среди наиболее прозорливых генетиков бытовало подозрение, что вирусы — это нечто вроде чистых генов. В этом случае для того, чтобы узнать, что же такое ген и как он воспроизводится, следовало изучать свойства вирусов. А так как простейшими вирусами были фаги, то в 40-х годах стало появляться все больше ученых, которые изучали фаги (так называемая фаговая группа), надеясь в конце концов узнать, каким образом гены управляют наследственностью клеток. Во главе этой группы стояли Луриа и его друг, немец по происхождению, физик-теоретик Макс Дельбрюк, который в то время был профессором Калифорнийского технологического института. Но если Дельбрюк продолжал надеяться, что проблему помогут решить чисто генетические ухищрения, то к Луриа все чаще начинала приходить мысль, что верный ответ удастся получить только после того, как будет установлено химическое строение вируса (гена). В глубине души он понимал, что невозможно описать поведение чего-то, если неизвестно, что это такое. Не сомневаясь, что он никогда не заставит себя изучить химию, Луриа избрал, как ему казалось, наиболее мудрый выход из положения и отправил к химику меня, своего первого серьезного ученика. [c.21]

    Первая изученная система сайт-специфической рекомбинации — это интеграция фага лямбда в хромосому бактерии-хозяина. Поскольку она описана в главе о вирусах (см. гл.. ХП1), мы не будем здесь на ней останавливаться, от.метим только, что в отличие от рассмотренных случаев хромосо.мы бактерии и фага не гомологичны, а для рекомбинации необходимы специальные последовательности и специализированный фермент. [c.104]

    Применяя ряд коллодийных мембран с градуированной по Илфорду и все уменьшающейся пористостью, Грабар измерял наименьший размер пор, при котором через мембрану в процессе ультрафильтрацни проходил раствор белков- или вирусов, и определял таким путем их размеры. Этот метод применялся для выделения и изучения размеров ряда вирусов. Использование диализа и ультрафильтрации для очистки коллоидных систем описывалось во второй главе. [c.215]

    В настоящее время наиболее вероятной представляется такая последовательность событий, ведущих к включению вирус-специфической ДНК ретровирусов в клеточную хромосому (рис. 161). После образования кольцевой молекулы в месте стыка двух LTR возникает короткий несовершенный инвертированный повтор. Этот повтор выполняет функцию att, т. е. специфического участка интеграции. Участок att узнается вирус-специфическим с рментом, обладающим эндонуклеазной активностью — одним из продуктов гена poU который попадает в клетку из заражающей вирусной частицы. Фермент вносит в обе цепочки молекулы вирус-специфической ДНК разрывы на расстоянии 4 нуклеотидов друг от друга. Этот же фермент вносит ступенчатый разрыв (на расстоянии 4—6 нуклеотидов) и в клеточную ДНК- Положение разрыва в клеточной ДНК не фиксировано. Далее происходит интеграция вирусной ДНК в хозяйскую хромосому. Предполагают, что механизм интеграции напоминает тот, который реализуется в фаговых системах, прежде всего у фага Ми (см. раздел 1 этой главы), т. е. разрывы цепей ДНК и воссоединение гетерологичных нуклеотидных последовательностей осуществляет один и тот же фермент — особая топоизомераза (интеграза). Процессы типа репарационных (застраивание брешей и удаление одноцепочечных хвостов ) приводит к двум последствиям во- [c.312]

    Репликационная система вируса полио.миелита изучена менее детально тем не менее здесь имеются явные отличия от только что рассмотренной фаговой системы. Так, на 5 -концах вновь синтезируемых (+) и (—)цепей полиовирусных РНК всегда присутствует низкомолекулярный вирус-специфический белок (VPg). Тирозино-вый остаток VPg соединен фосфодиэфирной связью с 5 -концевым уридиловым остатком вирус-специфических РНК (обе комплементарные цепи начинаются с уридилового остатка Большинство исследователей приписывают этому белку (или его комплексу с уридиловой кислотой) роль затравки при синтезе обеих нитей РНК Бо этой точке зрения, VPg функционально аналогичен терминальному белку аденовирусов (см. раздел 1 этс л главы). [c.320]

    Когда бактерицидные свойства серебра былк изучены, оказалось, что решающую роль здесь играют не атомы, а положительно заряженные ионь Аё. (Напомню читателям, что ионизация, рассмотренная в главе 1, повышает активность веществ в водных растворах.) Катионы серебра подавляют деятельность фермента, обеспечивающего кислородный обмен у простейших микроорганизмов, иными словами, душат болезнетворные бактерии вирусы, грибки (в этом смертельном списке порядка 700 видов патогенной флоры и фауны ) Скорость уничтожения зависит от концентрации ионов серебра в растворе так, кишечная палочка погибает через 3 мин при концентрации 1 мг/л, через 20 мин — при 0,5 мг/л, через 50 мин — прк [c.54]

    Эту главу я хочу закончить разговором о сточных водах. Они не относятся ни к пресным, ни к соленым. Их можно разделить на два вида первые поступают из городских квартир, из городской канализации, вторые — с промышленных предприятий. В водах первого типа присутствуют фекалии, моча, бумага, мыло, остатки пищи. Все это оседает в водоотстойниках, перегнивает на специальных площадках и не наносит вреда ни нам, ни природе. Кроме этого в сточных водах имеются элементы, с которыми естественным процессам очистки не совладать повехностно-активные вещества микробы и вирусы лекарства. [c.57]

    РНК (см. главу 3) и 2130 белковых субъединиц, масса каждой из которых составляет 17500. Длина вируса примерно 300 нм, ширина—около 17 нм. РНК вируса имеет спиралеобразную форму. Вокруг РНК нанизаны белковые частицы, образующие гигантскую надмолекулярную спиральную структуру, в которой насчитывается около 130 витков (рис. 1.26). Удивительной особенностью вируса является то, что после разъединения соответствующими приемами (добавление детергента) РНК и белковых субъединиц и последующего их смешивания (с предварительным удалением детергента) наблюдаются полная регенерация четвертичной структуры, восстановление всех физических параметров и биологических функций (инфектив-ная способность вируса). Подобная точность процесса спонтанной самосборки вируса обеспечивается, вероятнее всего, информацией, содержащейся в первичной структуре молекулы РНК и белковых субъединиц. Таким образом, последовательность аминокислот содержит в себе информацию, которая реализуется на всех уровнях структурной организации белков. [c.70]

    В последующих главах мы детально опишем различные высокоспециализированные биологические системы. В частности, в гл. 7 будет рассмотрена система вирус насекомых-клетки насекомьгх , которая используется для продукции аутентичных белков, кодируемьЕХ клонированными генами, а в гл. 19 -генетическая модификация домашних животных (коров, овец, свиней). В настоящей главе мы дадим краткое описание наиболее значимых для молекулярной биотехнологии систем, которые также будут рассматриваться в последующих главах. [c.24]

    Наиболее важные встречающиеся в природе диазины — это пиримидиновые основания урацил, тимин и цитозин, которые входят в состав нуклеиновых кислот [4]. Среди некоторых аналогов пиримидиновых нуклеозидов были обнаружены антивирусные агенты, такие, как идоксуридин, применяемый для лечения глазных заболеваний, вызванных вирусом Herpes, AZT — препарат, наиболее часто используемый для лечения ВИЧ, ламивудин (3-ТС), используемый одновременно для лечения гепатита В и ВИЧ-инфекций, и еще один препарат против ВИЧ-инфекций — ставудин (d4T). Пиримидиновый фрагмент содержится также в молекуле тиамина (витамин Bi) (разд. 21.11). Часто пиримидиновые циклы в нуклеиновых кислотах изображают иначе, чем в этой главе при этом пиримидиновый цикл перемещают относительно горизонтальной оси [c.256]

    Биотехнология как наука базируется на использовании биологических процессов в технике и промьппленном производстве (см главу 1) Эти процессы (от лат pro essus — продвижение) — как совокупность последовательных действий специалистов направлены на достижение соответствующих результатов при эксплуатации биообъекта(-ов) Говоря о процессах в биологической технологии, нельзя путать их с процессами в химической технологии Так, главным компонентом первых является какой-либо биообъект (вирус, бактерия, гриб, растительные или животные клетки, биомолекулы) Такие объекты отсутствуют в химической технологии Другой пример с высокими температурами, которые, как правило, неприемлемы в биотехнологии, но часто используются в химической технологии Наконец, многостадийность и высокие давления также являются атрибутами (от лат atnbuuo — придаю, наделяю) химической технологии, а не биотехнологии Однако биохимические и химические реакции следуют принципу ле Шателье, согласно которому равновесие системы смещается в направлении уменьшения эффекта произведенного воздействия [c.229]

    Микробиотехнология, или микробная биотехнология базируется на интегрированном использовании микробиологии, биохимии и инженерных наук. с целью реализации потенциальных способностей микроорганизмов в технике и промышленном производстве. По сути своей микробиотехнология тождественна промышленной (технической) микробиологии. Ее объектами являются микробы-вирусы (включая вироиды и фаги), бактерии, грибы, лишайники, протозоа (см. главу 2). В ряде случаев биообъектами являются первичные метаболиты микробного происхождения — ферменты, каталитическая активность которых лежит в основе инженерной энзимологии. [c.374]

    Данная глава посвящена выделению хроматографическими методами интактных клеток и субклеточных частиц. Многие исследователи выделяют вирусы и субклеточные частицы хроматографированием на пористых стеклах, гелях, ионитах для фракционирования клеток чаще всего пользуются пористыми стеклами. Очевидно, наиболее перспективным в этом отношении методом следует считать аффинную хроматографию. Действительно, фракционирование клеток на хроматографических носителях, так называемая хроматография сцепления (adheren e), имеет много общего с аффинной хроматографией. Клетки определенного типа вначале более или менее избирательно сорбируют на носителе, а затем после удаления сопутствующих примесей элюируют подходящим элюентом. Однако на практике вторую стадию часто опускают и проводят элюирование путем экстракции в статических условиях. И наоборот, многие операции, проводимые в статических условиях, можно выполнять на хроматографических колонках. Именно по этой причине чрезвычайно трудно провести четкую границу между строго хроматографическими методами и элюированием в статических условиях. [c.309]

    Развитие рентгеноструктурного анализа — это увлекательная история, начинающаяся с выяснения структуры одноатомных металлов и минеральных солей. В настоящее время этот метод используют для изучения очень сложных молекул, таких, как белки и вирусы. Число органических и металлорганических соединений, изученных с помощью рентгеноструктурного анализа, приближается к 50 ООО. Результаты этих исследований собраны в банке структурных данных [136], обеспечивающем порядок и полноту информации [137]. Целью этой главы являлось рассмотрение факторов, определяющих развитие метода, а именно наличие автоматических дифрактометров, цифровых вычислительных. машин, систем и комплексов кристаллографических программ. Прогресс в кристаллографии тесно связан с прогрессом в технологии компьютеров и ди-фрактрометров (пример — успешная разработка координатного детектора [138]), а также с развитием новых методов решения и уточнения структуры. Благодаря доступности метода и программ современная кристаллография стала популярным методом исследования. В исследовательских проектах, требующих точных структурных данных, неспециалисты в кристаллографии получают результаты, которые невозможно получить другими методами. Мы не пытались рассмотреть здесь многочисленные публикации, посвященные изучению разнообразных химических соединений. [c.269]

    Сегодня в этой области произошли явные перемены если раньше единственным используемым генетическим методом был отбор улучшенных штаммов, то сегодня предлагаются совсем новые подходы, основанные на технологии рекомбинантных ДНК (генетическая инженерия) С их помощью путем ферментации можно получать новые виды продукции белки и пептиды человека, антигены вирусов. Надо сказать, что большой интерес к биотехнологии в значительной мере обусловлен именно появлением генетической инженерии. В этой главе мы рассмотрим, какое применение могут найти методы модификации генетического материала как in vivo, так и in vitro для разработки новых и модернизации существующих биотехнологических процессов. [c.296]

    Вскоре после того как было обнаружено, что нейроспора может служить прекрасным объектом для генетико-биохимических исследований, в этой области стали использовать и другие микроорганизмы. Прежде всего начали проводить исследования на бактериях, а затем на бактериофагах и на вирусах других типов. Оказалось, что не только нейроспора, но и другие виды грибов, в частности дрожжевые грибы и различные виды Aspergillus, также очень удобны для генетических исследований. Генетика микроорганизмов развивалась с необычайной быстротой и дала чрезвычайно важные результаты. Помимо всего прочего, она сильно расширила наши представления о природе генов. В этой главе мы главным образом остановимся на генетике бактерий и бактериофагов. [c.239]

    Для того чтобы сознательно изучать структуру нуклеиновых кислот, необходимо сказать несколько слов об их функциях в организме. Процесс жизни требует непрерывного потока энергии, веществ и информации. Поток энергии и веществ целиком определяется функциями белков, о чем подробно говорилось в предыдупщх главах. Что же касается потока информации, то, как уже говорилось во введении, в каждой клетке и в каждой частице вируса запечатлена информация о том, какие вещества необходимо синтезировать и в каком порядке собрать их в организованную структуру, чтобы клетка могла выполнить свою главную задачу — воспроизвести самое себя. При выполнении этой задачи информация, заключенная в клетке, не лежит мертвым грузом, а передается из органа, где она запасена — ядра, —к рабочим орудиям, где идет синтез компонентов будущей дочерней клетки. Следовательно, осуществляется непрерывный поток информации. В конце концов нри делении дочерней клетке снова передаются все необходимые кальки , по которым будет построена следующая клетка, и так этот поток информации никогда не прерывается, пока идет жизнь. [c.200]


Смотреть страницы где упоминается термин Глава Вирусы: [c.312]    [c.320]    [c.90]    [c.79]    [c.378]    [c.545]    [c.215]    [c.62]    [c.346]    [c.117]    [c.21]   
Биохимия Т.3 Изд.2 (1985) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Глава 7. Вирусы, содержащие двунитевую РНК. М. Мак-Кри



© 2025 chem21.info Реклама на сайте