Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фибриноген, структура

    Глобулярные белки растворяются в воде и солевых растворах с образованием коллоидных систем. Примерами таких белков служат альбумин, основная составная часть белка куриного яйца глобин, белковый компонент гемоглобина, а также важный в процессах свертывания крови фибриноген. --Структура белков крайне сложна. В принципе, как и для других макромолекул, строение белков может быть описано в терминах конституции, конфигурации, конформации, суммарной брутто-конформации и ассоциации. Однако в химии белков более целесообразно применять другую номенклатуру. Различают при этом четыре типа структурных признаков [3.3.6]. [c.656]


    Фибриноген имеет вытянутую форму и напоминает двойную гантель. Длина молекулы фибриногена 46,0 нм узлы в его структуре [c.234]

    Такие белки, как основной белок миофибрилл мышц— миозин и белок крови — фибриноген, занимают промежуточное полож ие. Эти белки растворимы в солевых растворах, но их молекулы имеют палочковидную структуру. Растворы миозина и фибриногена обладают, подобно растворам фибриллярных белков, большой вязкостью. [c.36]

    С точки зрения химии полимеров глобулярные белки обладают рядом необычных свойств как уже упоминалось, каждый белок характеризуется точным молекулярным весом. Структура таких макромолекул, вообще говоря, жесткая и довольно компактная. Удельная плотность у разных веществ этого типа одинакова и, следовательно, можно считать, что каждой единице молекулярного веса свойствен определенный объем а это является обязательной предпосылкой для определения молекулярного веса путем сравнения объемов исследуемых молекул с объемом молекул стандартных соединений. Поэтому некоторые авторы [58, 65], которые, количественно оценивая поведение белка при элюировании, пытались исходить из теоретических представлений, связывали радиусы по Стоксу с объемом выхода. Почти во всех рассмотренных выше работах, касающихся определения молекулярного веса с помощью гель-хроматографии, несколько настораживает тот факт, что установленные соотношения предполагают наличие у молекул белков симметричной (сферической) формы. Однако в действительности форма молекул нативных белков не настолько отличается от симметричной, чтобы это могло повлиять на разделение, основанное на различии в размерах. Лишь Зигель и Монти [66] описали два предельных случая, когда высокомолекулярные белки, имеющие небольшой радиус (по Стоксу), элюировались на сефадексе 0-200 после низкомолекулярных компонентов. Однако эти белки — фибриноген (мол. вес 330000), ферритин (мол. вес 1 300000) и уреаза (мол. вес 483 ООО) — еще настолько мало [c.169]

    Исследование фибриллярных белков. Типичными представителями фибриллярных белков являются фибриноген, коллаген, кератин кожи и волос, миозин мышечной ткани, фиброин шелка. Белки данной группы нерастворимы в воде и относительно устойчивы к действию ферментов. Фибриллярные белки состоят из вытянутых цепей, что согласуется с размерами их молекул. Фибриноген и коллаген имеют соответственно молекулярный вес 450 ООО и 350 ООО и размеры 40 40 700 и 14 14 3000 А. Эти данные позволяют судить об особенностях третичной структуры фибриллярных белков. Молекулы их, по-видимому, составлены из полипептидных цепей, параллельных оси волокна. [c.152]


    Прежде чем рассмотреть исследования Астбери, кратко остановимся на предложенной им классификации белков, в основу которой был положен структурный признак [11, 12]. По этому признаку все белки делятся на два больших класса фибриллярных и глобулярных белков. Первые имеют вытянутую, волокнистую структуру вторые -форму глобулы (во времена Астбери они назывались корпускулярными белками). Такое разделение отчасти согласуется со спецификой функционирования белков и растворимостью их в воде. Фибриллярные белки входят в состав кожи, соединительных тканей, хрящей, скелета, волос, рогов и т.д. Как правило, в обычных условиях они химически инертны, не растворяются в воде и выполняют структурную или защитную функцию. Глобулярные белки играют активную роль в метаболизме, участвуя во всех процессах жизнедеятельности организма. Многие глобулярные белки растворимы в воде. Четкой структурной или функциональной границы между двумя классами белков, однако, провести нельзя. Например, миозин (белок мышц), хотя и имеет волокнистое строение, тем не менее химически не инертен. Функция миозина связана с превращением химической энергии в механическую работу. Несмотря на значительную условность, предложенная Астбери и сохранившаяся до сих пор классификация белков по структурному признаку остается все еще целесообразной. Сама идея разделения белков в зависимости от топологии структуры хорошо согласуется с одной из задач молекулярной биологии, а именно с установлением связи между строением (в том числе пространственным) и функцией биологических молекул. У. Астбери были изучены структуры разнообразных фибриллярных белков [13, 14]. Оказалось, что эти белки по структурному признаку могут быть разделены на две конформационные группы. Первая группа, названная по начальным буквам входящих в нее белков группой к.т.е.Г., включает такие белки, как кератин (белок волос, шерсти, ногтей и т.д.), миозин (белок мышц), эпидермин (белок кожи) и фибриноген (белок плазмы крови). Во вторую группу фибриллярных белков (группа коллагена) входят белки сухожилий, соединительных тканей, хрящей и др. Белки каждой группы имеют близкие картины рентгеновской дифракции, что указывает на их конформационную аналогию. [c.11]

    А. Основанием для такого представления о структуре глобулярных белков послужили появившиеся к тому времени данные о наличии белковых субъединиц у альбумина яйца и гемоглобина. В рентгенограммах фибриллярных белков и специально обработанных денатурированных глобулярных белков Астбери находил много общего, из чего он делал вывод об аналогичном характере пространственного строения белков в двух состояниях. У. Астбери писал, что "...все белки на некоторой стадии их существования являются фибриллярными в молекулярном смысле" и еще "...два наиболее стабильных и нерастворимых состояния белковой структуры, волокнистое и денатурированное, основываются на фундаментально подобных видах молекулярной организации денатурированное состояние является в основном фибриллярным состоянием, поскольку оно всегда представляет собой полностью вытянутые пептидные цепи, организованные после коагуляции в параллельные пакеты, как в фиброине шелка, р-кератине, (3-миозине и Р-фибриногене" [27. С. 502]. Замечательны здесь не столько предложенные Астбери конкретные модели фибриллярных, глобулярных и денатурированных белков, а высказанная им впервые идея общности их молекулярной пространственной организации. [c.14]

    Молекулы мономера имеют удлиненную форму (длина примерно в 5 раз превышает толщ,ину) и могут соединяться конец в конец и бок в бок за счет слабых связей. В результате образуются фибриллы с периодической структурой (рис. 21.14). Фибриноген к такой самосборке не способен по той причине, что имеющиеся в нем [c.506]

    Кровяная плазма, полученная по описанной выше методике, представляет собой жидкость, слегка окрашенную каротиноидамн, и содержит следующие белки альбумины (растворимы в 5%-ном солевом растворе), липопротеины, фибриноген и протромбин. Из цельной крови без защитных добавок при стоянии через несколько минут выделяются хлопья в результате превращения растворимого глобулярного фибриногена в н< растворимый нитевидный белок—фибрин, нити которого образуют ячеистую структуру сгустков. Это превращение происходит под влиянием протромбина и ионов кальция. Центрифугирование свернувшейся крови приводит к отделению смеси фибрина и красных кровяных тел. Надосадочная жидкость представляет собой кровяную сыворотку, которая отличается от плазмы тем, что не содержит фибриногена. Витамин К является антигеморрагическим агентом, так как он снижает концентрацию протромбина. Цитрат и гепарин предупреждают свертыванис крови, связывая ионы кальция. [c.670]

    Еще в 30-х годах главным образом в работах Астбери была дана рентгеногра(ф Ическая характеристика многих фибриллярных белков. Важнейший результат работ Астбери сводится к следующему. Многие совершенно различные в химическом отношении белки, такие например,, как кератин волос, шерсти и рога, миозин мышц, эпидермис кожных покровов, фибриноген—фибриллярный белок, образующийся при (свертывании крови, а также М(ногие другие дают практически одинаковые рентгенограммы. Это возможно только лишь В том случае, если конфигурации цепей этих белков и их упаковка (Или, иначе, их вторичная и третичная структуры в своих общих чертах не за(висят от специфччеокого чередова(Ния аминокислотных остатков. Здесь речь идет именно об общих чертах вторичной и третичной структур, так как на отдельных участках возможны существенные отклонения от общего плана строения за счет специфического взаимодействия боковых групп остатков, к чему, как указывалось выше, рентгенографический метод исследования оказывается нечувствительным (речь идет об изучении фибриллярных структур). [c.542]


    Фибриноген содержится в человеческой плазме в концентрации 200 — 300 мг на 100 мл и составляет приблизительно 3 — 4<Уо суммарного содержания плазменных белков. В образонании молекулы, состоящей из двух идентичных субъединиц, принимают участие три пары полипептидных цепей ( 2/3272). лежащих параллельно одна другой и сшитых между собой в N-концевой области многими дисульфидными снязями. Отдельные цепи имеют различный размер (для а-цепи М 67 ООО, для /3-цепи — 56 ООО и у-цепи — 47 ООО). Фибриноген имеет М 340 ООО (по данным малоуглового рентгеновского рассеяния в растворе 335 ООО 25 ООО). Предполагается, что его пространственная структура имеет вид вытянутого цилиндра длиной 45 нм и диаметром 9 нм. Гидратация фибриногена (5 г воды на 1 г белка) необычно высокая для белков. [c.427]

    Главное звено в свертывании крови — превращение растворимого белка фибриногена (фактор 1) под действием тромбина в фиб-рин-мономер, а затем путем полимеризации последнего — в нерастворимый фибрин-полимер. Фибриноген — высокомолекулярный белок, состоящий из грех пар неидентичных субъединиц — аА, рВ и Yi т. е. его структура (aA,fiB,v)2. Совокупность физико-хими-ческих данных позволила С. Халлу и X. Слэйтеру предложить модель пространственной организации фибриногена (рис. 134). [c.234]

    Кровь, вытекающая из раны, соприкасается с воздухом и смещивается с вешествами, вьще-ляющимися из поврежденных клеток и разрушенных тромбоцитов. К числу таких веществ относятся в частности 1) тромбопластин — липопротеин, который высвобождается из по-врежденньгх тканей 2) факторы свертывания VII и X, представляющие собой ферменты плазмы 3) ионы кальция. Все вместе эти вещества катализируют превращение растворенного в плазме белка протромбина в тромбин, представляющий собой активную протеазу, т. е. фермент, расщепляющий белки. Тромбин гидролизует фибриноген (другой растворенный в плазме белок) с образованием фибрина. Фибрин нерастворим и имеет волокнистую структуру. Волокна фибри- [c.171]

    Другое подобное полимеризационное явление наблюдается для фибриногена — глобулярного белка, ответственного за свертывание крови. Обзор литературы по этому вопросу был сделан Шерагой и Ласковским [999]. Нативный фибриноген наблюдается в электронном микроскопе в виде линейной структуры, состоящей из трех узелков, связанных сравнительно тонкой нитью [1000]. В этой форме белок не обладает способностью к образованию агрегатов. Однако под действием протеолитическо-го фермента тромбина от фибриногена отщепляется небольшая пептидная молекула, и оставшийся белок ( фибриновый мономер ) проявляет высокую тенденцию к ассоциации с образованием больших структур и в конечном счете сшитого геля. Процесс поперечного сшивания может быть ингибирован различными реагентами в этих условиях можно изучать ассоциацию фибринового мономера до стержневидных полимеров. Исследование методом светорассеяния позволяет предположить, что поперечное сечение этих стержней в два раза больше поперечного сечения фибринового мономера, на основании чего было предположено [1001,1002], что линейный полимер фибрина растет в результате ступенчатого перекрытия удлиненных мономерных звеньев, как это схематически изображено на рис. 130, б. Однако размеры стержневидного фибринового полимера, наблюдаемые в электронном микроскопе, по-видимому, исключают ассоциацию путем параллельного расположения [1000], и причина этого расхождения еще не выяснена. [c.339]

    Тромбин—это сериновая протеаза с мол. массой 34000, состоящая из двух полипептидных цепей. Тромбин гидролизует четыре пептидные связи Aгg-01у в фибриногене (рис. 55.6). Из этих четырех связей две соединяют области А и а, а другие две—области В и р в цепях Аа и Вр соответственно. Удаляемые из молекулы фибриногена фрагменты А и В являются отрицательно заряженными фибринопептидами, в результате образуется мономер фибрина, имеющий структуру (аРу)г. Длинные нерастворимые мономеры фибрина спонтанно ассоциируют в регулярные зигзагообразные структуры в результате образуется нерастворимый полимерный фибриновый сгусток. Он захватывает эритроциты, тромбоциты и другие компоненты крови, в результате чего образуется красный тромб или белый тромб (тромбоцитарная пробка). На ранней стадии фибриновый сгусток представляет собой весьма рыхлое образование, удерживающееся лищь нековалентносвязанной системой нерастворимых фибриновых мономеров. [c.326]

    Общий метод синтеза КА заключается в ковалентном присоединении гаптена к полимеру-носителю [208]. В качестве носителя обычно используют белки (сывороточные альбумины, у-глобулины, фибриноген и т. д.). Возможно также применение полиаминокислот и полисахаридов, антигенных самих по себе, и других полимеров [2П]. Процесс синтеза КА представляет собой ковалентную модификацию белка низкомолекулярным реагентом. Основной принцип получения КА состоит в том, чтобы связать гаптен с белком так, чтобы та часть молекулы гаптена, которая должна служить антигенной детерминантой, осталась свободной. В зависимости от точки связывания гаптена с носителем можно получить антитела, специфичные к той или иной части его молекулы, а также набор специфических антител. Наличие вставки между гаптеном и белком увеличивает доступность гаптена для распознавания и повышает специфичность вырабатываемых антител. Напротив, жесткая связь гаптена с белком снижает специфичность, приводя к получению группоспецифических антител, реагирующих с набором родственных по структуре гаптенов. Узкоспецифические антитела необходимы, например, для иммунологических методов анализа, а группоспецифические — для нейтрализации в организме ФАВ и их активных метаболитов. [c.143]

    Многие полипептиды и белки синтезируются в виде цепей, имеющих большее число аминокислотных остатков, чем конечные функционально-активные структуры, присутствующие в клетке или секретируемые в кровь и другие жидкости организма. Так называемый процессинг этого предшественника с образованием более короткого белка осуществляется с участием ряда протеолитических ферментов. Здесь будет приведено лишь несколько примеров таких превращений, более подробная информация представлена в последующих главах. Один из примеров зимогенов (неактивных предшественников протеолитических ферментов) —трипсиноген, который при гидролизе одной пептидной связи превращается в активный фермент — трипсин (гл. 8). Фибриноген представляет собой растворимый белок плазмы крови, превращающийся в результате протеолиза в нерастворимый фибрин кровяных сгустков, предохраняющих организм от больших потерь крови при поражении кровеносных сосудов (гл. 29). Проинсулин, состоящий из одной полипептидной цепи с внутримолекулярными дисульфидными мостиками, в результате протеолиза дает активный инсулин, состоящий из двух пептидных цепей и образующийся за счет выщеплепия внутреннего пептидного сегмента из полипептидной цепи предшественника (гл. 46). Наконец, состоящий из трех цепей нерастворимый фибриллярный белок, коллаген, образуется в результате протеолитического расщепления предшественников, имеющих более длинные аминокислотные последовательности (с дополнительными пептидными сегментами в NH2- и СООН-концевых частях), чем цепи коллагена (гл. 38). Эти примеры иллюстрируют также возможные пути участия протеаз в контроле биологических процессов. [c.200]

    Если принять, что фибриллярные белки эпидермиса, белки кератинизированнь х тканей, основной белок мьшщ миозин, а теперь и фибриноген крови-все имеют в основе одну и ту же особую форму молекулярной структуры и потому, вероятно, представляют собой адаптационные варианты одного исходного принципа, то здесь мы, видимо, столкнулись с одним из великих фактов эволюции биологических молекул . [c.36]

    Чем объяснить, что мономеры фибрина способны агрегировать, а фибриноген, из которого они образуются,-нет Окончательный ответ на этот вопрос дадут проводящиеся детальные исследования структуры молекул. Все изученные к настоящему времени фибринопептиды всех видов позвоночных обладают большим отрицательным зарядом. В них обнаружено обилие остатков глутаминовой и аспарагиновой кислот. Кроме того, в В-фибринопептиде имеется необьР1ное отрицательно заряженное производное тирозина, а именно тирозин-0-сульфат. Видимо, наличие этих, а также и других отрицательно заряженных групп вызывает отталкивание молекул фибрино- [c.168]


Смотреть страницы где упоминается термин Фибриноген, структура: [c.619]    [c.619]    [c.153]    [c.310]    [c.95]    [c.102]    [c.35]    [c.182]    [c.12]    [c.21]    [c.197]    [c.318]    [c.196]    [c.211]    [c.122]    [c.59]    [c.60]   
Химия природных соединений (1960) -- [ c.542 ]




ПОИСК







© 2025 chem21.info Реклама на сайте