Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование и разрыв связи углерод — водород и реакции углеводородов с водородом

    ОБРАЗОВАНИЕ И РАЗРЫВ СВЯЗИ УГЛЕРОД - ВОДОРОД И РЕАКЦИИ УГЛЕВОДОРОДОВ С ВОДОРОДОМ [c.65]

    Обрядчиков и Тейлор считают, что реакция крекинга фактически не может иметь места до тех пор, пока углеродный атом углеводорода не приблизится к поверхности настолько, что окажется в пределах расстояния, соответствующего его химическому взаимодействию с кислотными центрами катализатора. Поэтому образованию карбоний-иона обязательно должен предшествовать разрыв связи углерод -водород. С помощью дейтеро-обмена было установлено, что разрыв связи С-Н происходит очень легко, и первой стадией является, по-видимому, реакция дегидрирования. [c.27]


    Интенсивность любой из этих реакций может изменяться в весьма широких пределах в зависимости от продолжительности, температуры и парциального давления водорода. Потенциально при соответствующем выборе катализатора и условий водород способен тем или иным способом взаимодействовать с любым углеводородным компонентом нефти практически при любых температуре и давлении. Обычно температура промышленных процессов не превышает приблизительно 540° С, а давление — около 700 ат. Как правило, с повышением температуры усиливаются реакции гидрокрекинга, т. е. реакции, при которых происходит разрыв связей углерод — углерод, например деалкилирование, разрыв колец, разрыв цепей. Если парциальное давление водорода недостаточно высокое, то одновременно происходит также разрыв связей углерод — водород, сопровождающийся выделением молекулярного водорода и образованием алкенов и ароматических углеводородов. Хотя интервалы температур, при которых проводят термический крекинг и гидрирование, практически совпадают, применение катализаторов и малая продолжительность реакций, а также присутствие водорода подавляют нежелательные термические реакции, которые неизбежно протекали бы при обычных условиях. Повышение давления благоприятствует образованию связей углерод — водород и насыщению кратных связей углерод — углерод. При достаточно низких давлениях алканы претерпевают дегидрирование до алкенов и циклизацию в ароматические углеводороды цикланы дегидрируются до алкенов и ароматических углеводородов, а пятичленные цикланы изомеризуются и дегидрируются до ароматических. Практически при любых условиях гидрирования в той или иной степени происходит изомеризация углеводородных цепей и колец. Выбор надлежащих условий и применение достаточно активных катализаторов позволяют достигнуть преобладания любой из рассмотренных реакций, т. е. высокой избирательности превращения углеводородов в целевые продукты. [c.127]

    При хроматографическом определении углеродного скелета могут проходить все три реакции гидрирование, дегидрирование и гидрогенолиз. Из них наиболее общая реакция — гидрогенолиз. Температура катализатора в этом случае устанавливается 300°С, скорость потока водорода 20 мл/мин, исследуемая проба порядка 20 мкг. При этом происходит разрыв связей в функциональных группах с образованием исходного углеводорода или следующего низшего гомолога. Связи углерод—сера и углерод—галоген (кроме фтора) разрываются и образуется исходный углеводород. Связь углерод—кислород разрывается во вторичных и третичных спиртах, вторичных и третичных эфирах и кетонах. Связь углерод—азот разрывается во вторичных и третичных аминах и амидах. н-Ал-каны, проходя через катализатор, не подвергаются никаким изменениям, так как все связи в их молекулах насыщены. [c.200]


    Методы, связанные с деструктивной гидрогенизацией, ведут к существенному облегчению фракционного состава сырья путем расщепления (под давлением водорода) высокомолекулярных соединений с присоединением водорода к продуктам расщепления. При расщеплении происходит разрыв связи углерод—углерод. В указанных процессах наряду с расщеплением высокомолекулярных соединений и их деструктивной гидрогенизацией идут реакции а) гидрирования непредельных углеводородов жирного ряда б) гидрирования циклических углеводородов в) преобразования сераорганических соединений в сероводород и углеводороды г) гидрирования кислородсодержащих соединений с об-разованием Н2О и углеводородов д) гидрирования азотистых соединений с образованием МНз и углеводородов е) изомеризации ж) деполимеризации. [c.25]

    Торпе и Юнг [531 первыми предложили теорию прямой молекулярной перегруппировки, т. е. первичного разрыва углеводородной цепи, сопровождающегося одновременным смещением атомов водорода с образованием олефииа и предельного углеводорода с меньшим числом атомов углерода или молекулы водорода. Согласно представлениям Габера [15] этот первичный разрыв должен происходить по месту крайней связи С—С с обязательным образованием метана. Одиако последующие работы показали, что разрыв углеводородной цени может произойти в любом положении и что общая реакция представляет собой сумму таких различных расщеплений. [c.7]

    Как правило, с повышением температуры усиливаются реакции гидрокрекинга, при которых происходит разрыв связей углерод — углерод, например деалкилирование, разрыв колец, разрыв цепей. Если парциальное давление водорода недостаточно высокое, то одновременно происходит разрыв связей углерод — водород, сопровождающийся выделением молекулярного водорода и образованием олефинов и ароматических углеводородов. [c.205]

    Под действием высоких температур происходит разрыв углерод-углеродных связей с образованием в итоге предельных и непредельных углеводородов с меньшим числом углеродных атомов. Термический крекинг — радикальный процесс, в ходе которого радикалы, образовавшиеся за счет отрыва водорода (реакция 1), подвергаются распаду с разрывом С—С-связей в Р-положении к радикальному углероду (реакции 2 и 3) или диспропорционированию (реакция 4)  [c.102]

    Большинство представляющих практический интерес химических превращений требуют диссоциативной адсорбции реагирующих молекул, сопровождающейся частичным или полным разрывом внутримолекулярных связей. Так, реакции каталитического гидрирования и окисления связаны с диссоциацией водорода и кислорода на поверхности металла. Образование углеводородов из оксида углерода и водорода включает разрыв связи С=0, а синтез аммиака — диссоциативную адсорбцию азота. Промежуточной стадией изомеризации, гидрогенолиза, диспропорционирования и других превращений углеводородов является формирование двух или многоточечных хемосорбционных комплексов, возникающих в результате разрыва нескольких связей С-Н [16]. Разрыву связей С-С в пропане и последующих гомологах предшествуют структуры типа  [c.545]

    Как правило, с повышением температуры усиливаются реакции гидрокрекинга, при которых разрываются связи углерод — углерод, например деалкилирование, разрыв колец, разрыв цепей. Если парциальное давление водорода недостаточно высокое, то одновременно происходит разрыв связей углерод — водород, сопровождающийся выделением молекулярного водорода и образованием олефиновых и ароматических углеводородов. Применение катализаторов и малая продолжительность реакций, а также присутствие водорода подавляют нежелательные реакции, которые протекают в условиях термического крекинга. [c.189]

    Реакция с элементарным фтором. При смешении углеводорода с фтором могут происходить химические реакции нескольких типов. Их можно классифицировать следующим образом 1) замещение атома водорода фтором 2) присоединение фтора по непредельной с5 -.и 3) разрыв цепи по углерод-углеродной связи 4) образование высокомолекулярных соединений через свободные радикалы как промежуточные соедит1ения. Поскольку образование связи углерод — фтор является сильно экзотерми- [c.68]

    Тейлор и др. [157] считают, что реакция крекинга фактически не может иметь места до тех нор, пока углеродный атом углеводорода не приблизится к новерхности настолько, что окажется в пределах расстояния, соответствующего его химическому взаимодействию с кислотными центрами катализатора. Поэтому образованию карбоний-иона обязательно должен предшествовать разрыв связи углерод — водород. В связи с этим была изучена реакция обмена между метаном и дейтерометапами и было установлено, что эта реакция происходит при 345°, т. е. при температуре значительно более низкой, чем температуры реакции крекинга. Это означает, что разрыв связей углерод — водород происходит очень легко и что первой стадией каталитического кре- [c.371]


    Райс [29d] рассматривал разложение парафинов как цепную реакцию, инициируемую свободными радикалами, образованными первоначально расщеплением углерод—)тлеродной связи. Атомный водород и радикалы, получающиеся при расщеплении нестойких осколков, образовавшихся при первоначальном разрыве связи з лерода с углеродом, реагируют с еще непрореагировавшими молекулами углеводорода. Взаимодействие первичных радикалов с окружаюпщми молекулами представляет вторичные реакции, которые дают начало щклу или цепи реакций и непосредственно не определяют направления разложения. С Другой стороны, новые радикалы, получающиеся при действии их на непрореагировавшие молекулы углеводорода, определяют состав продуктов реакции. Сделана попытка оценить прочность связей между отдельными атомами в углеводородах. Найдено, что в случае метана второй и третий водородные атомы связаны с углеродом слабее, чем первый. Прочность первой связи С —Н в СН4 равна 93 ООО кал, прочность второй связи С —Н в СН4 на 1 200 кал меньше и прочность третьей связи С —Н в СН4 на 4 ООО кал меньше, чем прочность первой связи. При разложении пентана имеют место два процесса 1) отщепление водородных атомов и 2) разрыв углерод—углеродной связи. [c.566]

    Следует сказать несколько слов о других механизмах, предложенных для объяснения каталитического крекинга. Тейлор и его сотрудники [52] придерживаются того мнения, что необходимо разорвать, по крайней мере, одну связь С—Н для того, чтобы ввести углеводород в сферу влияния катализатора. Исследование обмена между С04 и СН4 на алюмосилнкатном катализаторе при 345° привело указанных авторов к заключению, что механизм каталитического крекинга состоит в дегидрогенизации, являющейся первой стадией, за которой следует разрыв связи углерод-углерод, приводящий к образованию более легких продуктов. Последние испаряются с катализатора в виде предельных или непредельных соединений, в зависимости от концентрации водорода на поверхности. Таким образом, предполагается, что диссоциативной адсорбцией углеводородов можно объяснить результаты каталитического крекинга. Однако этот механизм не объясняет образования продуктов реакции с разветвленными цепями, например образования изобутана вместо н-бутана при каталитическом крекинге не объясняется и тот факт, что водород, прибавленный во время крекинга к парам углеводорода, оказывает действие инертного разбавителя, вследствие чего образу тся не меньше, а больше непредельных соединений. Первое условие механизма Тейлора, требующее, чтобы прежде всего разорвалась [c.32]

    С повышением температуры реакции гидрокрекинга усиливаются, при этом происходит разрыв связей С—С, например при деалкилировании, яри разрыве цепей и колец. Бели парциальное давление водорода недостаточно высоко, то одновременно разрываются и связи С—Н, что сопровождается выделением водорода и образованием олефиновых и ароматических углеводородов. Это объясняется также тем, что связь С—С менее прочна и реакционноспособна, чем связь С—Н. Энергия связи С—С составляет от 247 до 263,8 кДж/моль (от 59 до 63 -ккал/моль). В цепях н-алканов связи СНз—СНа несколько слабее неконцевых связей СНг— СН2. Циклопарафиновые кольца устойчивы, и их гидрогенолиз протекает в малой степени. Циклогексаны СюНго и выше распадаются с образованием в основном изобутана и циклопарафина, имеющего на 4 атома углерода меньше, чем исходный. Образующиеся циклопарафины представлены в основном циклопентанами. При невысоких температурах эта реакция, особенно характерная для гидрокрекинга, проходит с довольно высокой селективностью. [c.209]

    Гидрогенолизом углеводородов ряда циклопентана называется реакция дециклизации с образованием парафиновых углеводородов. Разрыв циклопентаноБого кольца происходит преимущественно по р-связи по отношению к углероду кольца, имеющего боковую цепь. Например, для метилциклопентана при 300 °С над платиновым катализатором в присутствии водорода реакция протекает так  [c.267]

    Приведенные в таблице данные показывают, что из каждых 100 молей к-гептана получается по 3 моля метана и гексана, по 5 молей этана и пентанов, по 20 молей пропана и бутанов п 52 моля изомеров С, 14 молей к-гептана остаются пепрореагировавшими. Разрыв связей между первым и вторым, вторым н третьим и третьим и четвертым атомами углорода происходит в отношенпи 3 5 26. Это указывает на то, что реакция протекает по карбоний-йонпому механизму. На основании баланса по углероду между превращенным м-гептаном и получившимися углеводородами С)—Сб можно заключить, что низкомолекулярпые осколки сразу же иос.те образования стабилизируются, присоединяя водород. [c.272]

    Идеальным разрешением этого вопроса является полное удаление нежелательных составляющих — серы, азота и металлов без потери углеводородов, включающих эти элементы. Каталитическая гидрогенизация может служить превосходным способом проведения такой очистки в настоящее время она становится экономически целесообразной в связи с получением водорода в качестве отхода в процессах каталитического риформинга. Освобождение от нежелательных элементов сопровождается разрывом молекулярной цепи или связи в местах присоедипения атомов серы, азота или кислорода. Этот разрыв сопровождается присоединением водорода и образованием сероводорода, аммиака и воды. Коночный углеводородный продукт реакции обычно остается либо в виде алифатического углеводорода, либо алкильной грунпы, связанной с ароматическим или нафтеновым кольцом. Эти углеводородные продукты реакции обычно имеют больший молекулярный объем, чем исходные серу-, азот- или кислородсодержащие компоненты. Поэтому, а также вследствие разрыва незначительного числа углерод-углеродных связей объемный выход жидких продуктов гидрогенизации часто превышает 100% от исходного сырья. [c.236]

    Многие реакции, которые вызываются облучением органического вещества, имеют место и нри облучении полисилоксанов выделение газов, разрыв цепи, образование поперечных связей и разветвление [102, 134, 241, 464]. При облучении полисилоксанов в отличие от нолисиланов [56] преобладает не разрыв цепей, а процесс сшивания [88, 134, 135, 289]. Реакция протекает с разрывом гомолитической связи, и следует ожидать, что предпочтительно будут рваться более слабые связи (табл. 21). При облучении углеводородов, таких, как полиэтилен, выделяется водород, и в конечном счете полимер полностью разрушается, так как наиболее слабой связью является связь углерод — углерод, составляющая основу макромолекул [290]. Самая слабая связь в нолидиметилсилоксанах, связь углерод — кремний, разрывается раньше силоксановой связи. Сшивание преобладает над разрывом цепи, и в выделяющихся газах наряду с водородом обнаруживают метан и этан [134, 135, 288, 368, 464]. В результате облучения образуются радикалы [см. уравнение (124)] [134]  [c.208]

    Разрыв С — С-связи с присоединением водорода (гидрогенолиз) в присутствии гидрирующего катализатора — явление, сравнительно редкое в органическом катализе. Такой разрыв наблюдается либо в случае пониженной прочности связи под влиянием накопления по соседству электроотрицательных групп, например, у соединений, имеющих склонность к образованию свободных радикалов триарилметильного типа, либо в полиметиленовых кольцах с малым числом атомов углерода (циклопропан, циклобутан и их производные), для которых принимается наличие значительного байеровского напряжения, связанного с искажением валентных углов, свойственных правильному тетраэдру. Обыкновенные нормальные С — С-связи, например С — С-связи парафиновых углеводородов, оказываются достаточно прочными и в условиях, обычно применяемых при каталитическом гидрировании органических соединений, не расщепляются с присоединением водорода. Сказанное справедливо в полной мере только для тех случаев, когда в качестве катализаторов применяются благородные металлы, в частности платина. Однако в тех случаях, когда катализатором является никель, возможен гидрогенолиз С —С-связей даже в таких простых молекулах, как этан и пропан. Такого рода реакции описаны в старых работах Сабатье , в более поздних работах Тейлора с сотрудниками и недавних исследованиях, Гензеля . В последних описываются деметилирование 2, 2, 3-триметилпен-тана и 2,2-диметилбутана в присутствии никелевого катализатора и водорода и превращение их соответственно в триптан и неопентан. [c.223]


Смотреть страницы где упоминается термин Образование и разрыв связи углерод — водород и реакции углеводородов с водородом: [c.88]    [c.615]    [c.250]    [c.137]    [c.82]   
Смотреть главы в:

Каталитические превращения углеводородов -> Образование и разрыв связи углерод — водород и реакции углеводородов с водородом

Каталитические превращения углеводородов -> Образование и разрыв связи углерод — водород и реакции углеводородов с водородом




ПОИСК





Смотрите так же термины и статьи:

Образование и разрыв связи углерод — углерод

Образование углеводородов

Разрыв связей

Реакции образования связей

Реакции разрыва связи

Связи разрыв и образование

Углерод связи

Углерод, образование связей



© 2025 chem21.info Реклама на сайте