Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

МАССООБМЕННЫЙ РЕЖИМ

    Массообменный режим, характерный для печей-теплогенераторов, обеспечивается внесением реагента в зону технологического процесса, следствием чего является протекание в этой зоне химических реакций с соответствующим тепловым эффектом. [c.40]

    В автогенных и топливных печах-теплогенераторах эффект теплогенерации зависит от того, в каком виде подводится окислитель в зону технологического процесса — в виде воздуха, кислорода или окислов. Таким образом, для реализации химической энергии сырьевых материалов или топлива в зоне технологического процесса в нее должна быть введена определенная масса окислителей, и поэтому определяющим процессом, обеспечивающим возникновение тепла в зоне, является процесс поступления определенной массы кислорода в том или ином виде. Такой режим работы печей естественно называть массообменным. Режим работы печей, в которых генерация тепла в зоне зависит от подвода или наведения электрического тока, будем называть электрическим. [c.44]


    Таким образом, можно заключить, что термодеструктивные процессы переработки ТНО, особенно коксования, представляют собой исключительно сложные многофакторные нестационарные гетерогенные и гетерофазные диффузионные процессы со специфическим гидродинамическим, массообменным и тепловым режи — мом. [c.41]

    При сохранении химического подобия на геометрию и режим теплопередачи также накладываются определенные ограничения, но они не являются столь жесткими, как в случае динамического подобия. В табл. 76 приведены геометрические соотношения для гомогенных и гетерогенных реакторов при двух различных соотношениях между размерами частиц и объемом аппарата. Аналогично, в табл. 77 показаны характеристики теплопередачи через стенки сосуда для модели и прототипа, объемы которых находятся в отношении 1/Х . В обеих таблицах диффузионный массообмен не учитывается. [c.347]

    Распределение времени пребывания частиц потока (жидкости, газа или сыпучего материала) в аппарате и параметры моделей продольного перемешивания определяют экспериментальным путем. Для этой цели получили широкое распространение методы нанесения возмущения в определенном сечении потока и фиксирования вызванных им последствий (отклика системы) в другом сечении. Возмущающий сигнал может быть различным по форме и по физической природе. Наибольшее распространение получили импульсная и ступенчатая формы возмущений, значительно реже применяют возмущающий сигнал циклического вида. В качестве сигнала в поток вводят трассер (индикатор краситель, солевой раствор и т. п.), химически не взаимодействующий со средой и не участвующий в массообмене. [c.36]

    О влиянии продольного перемешивания на разделяющую способность массообменных колонн можно судить по следующему примеру [230]. Для извлечения 95% бензола из газовой фазы абсорбцией легким маслом в насадочной колонне диаметром 0,5 м при противотоке фаз требуется колонна высотой 8,5 м. При наличии продольного перемешивания в газовой и жидкой фазах, характеризуемого значениями Реж = 3,6 и Рбу = 25, та же степень извлечения может быть достигнута в аппарате высотой 25 м. [c.222]

    Другой причиной улучшения показателей работы массообменных аппаратов в нестационарном режиме является увеличение движущей силы. Суть этого эффекта для насадочных и тарельчатых аппаратов состоит в том, что при циклическом сливе жидкости со ступени (полном или частичном) и относительно быс фой замене ее свежей жидкостью режим на этой ступени приближается к режиму идеального вытеснения, обладающему максимально возможной движущей силой. Наиболее интенсивным режим работы аппарата будет тогда, когда время цикла примерно равно среднему времени пребывания жидкости на ступени. [c.303]


    Рассмотрим сначала режим противотока в стационарных условиях. При чистом массообмене, не осложненном химической реакцией, имеется только один компонент, переходящий из одной фазы в другую. Поэтому выражение материального баланса для элементарного объема аппарата можно записать в следующем виде  [c.384]

    Стационарный циклический режим можно также рассчитать по формулам, полученным в [86] для расчета регенеративных теплообменников. Проводя аналогию между тепловыми и массообменными процессами, получим, что концентрация адсорбированного вещества вычисляется по формуле [c.239]

    Наибольшее влияние гидродинамических условий на коэффициент массообмена проявляется при неполном взвешенном состоянии твердых частиц, так как увеличение Ксц в этой области приводит к вовлечению большего числа твердых частиц в процесс массообмена. После достижения критической точки на массообмен незначительно влияет увеличение частоты вращения мешалки, а следовательно, оптимальным режимом для процессов массообмена будет режим, описываемый уравнением (60). [c.34]

    Пространственные неоднородности не только ухудшают качество работы реакторов, но и способствуют появлению неустойчивых режимов. При хорошем массообмене небольшой по объему очаг высоких температур постепенно распространяется по всему реактору, приводя к тому, что режим, устойчивый в отсутствие пространственных неоднородностей, становится неустойчивым [42]. [c.16]

    Если на полке пенного аппарата режим перемешивания жидкости близок к полному смешению, то движущая сила теплопередачи (по жидкой фазе) эквивалентна конечной температуре пены, постоянной во всем объеме аппарата при массообмене же (например, при абсорбции) движущую силу полагают эквивалентной конечной концентрации поглощаемого компонента в жидкости за вычетом равновесной концентрации [146]. [c.95]

    В настоящее время для расчета массообменных аппаратов широко используются представления об идеализированных моделях. Чаще всего принимают, что поток жидкости или газа в аппарате можно представить моделью идеального вытеснения или полного смешения. В реальных реакторах режим движения потоков никогда не удовлетворяет полностью этим идеализированным моделям и носит промежуточный характер. Поэтому желательно оценить отклонение реального потока от идеального. [c.157]

    Решение. Аппарат с орошаемой взвешенной насадкой представляет собой цилиндрическую колонну с одной или несколькими перфорированными, щелевыми или прутковыми решетками и расположенными на них слоями насадки из полых шаров. При подаче газа под нижнюю решетку в результате взаимодействия потоков газа и жидкости с насадкой образуется турбулизованная газожидкостная смесь с развитой межфазной поверхностью. В зависимости от скорости газа в аппаратах ВН различают три основных гидродинамических режима — стационарное состояние насадки, начальное и развитое взвешивание. Оптимальным для осуществления массообменных процессов является режим развитого взвешивания насадки. [c.187]

    Для интенсификации процессов тепло- и массообмена при распылительной сушке жидких материалов успешно используют методы увеличения относительных скоростей движения фаз и объемных коэффициентов теплообмена путем более эффективного использования объема сушильной камеры. Этот способ интенсификации тепло- и массообменных процессов следует считать весьма перспективным, так как при этом значительно уменьшаются габариты сушильной камеры, упрощается конструкция аппарата, улучшается аэродинамический режим. [c.151]

    Практическое значение имеют четыре типа режимов, обеспечивающ,их возникновение тепла в зоне технологического процесса и таким образом определяющих работу печей радиационный, конвективный, массообменный и электрический. Возможен также пятый — механический режим, когда тепло в зоне технологического процесса возникает непосредственно за счет механической энергии (трения). Этот режим, однако, пока не имеет практического значения. [c.40]

    Заметим, что величины Ре и Ф, определяемые по формулам (5.1.45), (5.1.46), характеризуют соответственно интенсивность перемешивания и интенсивность массообмена в абсорбере. Чем меньше величина Ре, тем интенсивнее перемешивание, и наоборот, чем больше Ре, тем ближе гидродинамический режим в аппарате к режиму идеального вытеснения. Аналогичную роль играет число Ф. Чем выше Ф, тем более интенсивно идет массообмен в абсорбере, и наоборот, чем ниже Ф, тем меньше интенсивность массообмена. При / = О будет Ф = О, и массообмен в аппарате отсутствует. [c.215]

    На ситчатых тарелках механические примеси и продукты окисления не удерживаются — они скапливаются в нижней части абсорбера и извлекаются оттуда во время профилактического ремонта. Ситчатые тарелки конструкции ВНИИгаз обеспечивают нормальную работу массообменных аппаратов при трех—четырехкратном изменении нагрузок. Такой интервал соответствует требованиям ГПЗ тем более, что при трех- — четырехкратном снижении производительности поддерживать заданный технологический режим становится затруднительным независимо от типа [c.396]


    Формула (5.36) позволяет рассчитать интенсивность массообмена реагирующей частицы произвольной формы с поступательным потоком, когда на поверхности частицы протекает химическая реакция первого порядка, если известна сила сопротивления частицы / и среднее число Шервуда Sho, соответствующее массообмену покоящейся частицы с неподвижной средой. В случае теплообмена формула (5.36) определяет число Нуссельта для частицы произвольной формы при фиксированной температуре поверхности частицы и линейном законе теплообмена частицы с окружающей средой. Формула (5.36) обобщает результаты работы [119], где рассматривался диффузионный режим реакции на поверхности сферы (что соответствует предельному переходу при /с -v оо в задаче (5.1)). [c.259]

    В вибрационных тепло- и массообменных аппаратах (гетерогенные реакторы, теплообменники, экстракторы, сушилки с кипящим слоем, абсорберы, кристаллизаторы и т.д.), в отличие от аппаратов в традиционном исполнении, применяют насадку, вибрирующую, как правило, в осевом направлении. Вибровозбудители (кинематич. или электромагнитный) обеспечивают вариацию параметров вибрации, что позволяет корректировать режим работы оборудования. Достоинства этих аппаратов низкие уд. капиталовложения и эксплуатационные расходы, высокая производительность. Так, в экстракторах вибрационного действия по сравнению с обычными аппаратами металлоемкость уменьшается в 1,2-3,0 раза, расход энергии-в [c.366]

    Скорость потока влияет на массообмен [см. уравнения (4.6), (4.7)]. При малой скорости потока и можно полагать, что р << к, режим диффузионный, = Рз и массообмен увеличивается со скоростью потока. При больших скоростях потока режим процесса переходит в кинетический и перестает зависеть от и. Характер изменения К и) показан на рис. 4.17, б. [c.116]

    В гл. VI рассмотрено применение псевдоожиженного слоя в условиях конвективного режима, а также некоторые общие положения, касающиеся исевдоожижен-ного состояния сыпучих материалов. В условиях массообменного режима твердая сыпучая фаза содержит энергетические ингредиенты, а псевдоожижающая среда, обычно воздух, является реагентом-окислителем. О бразование а исевдоожижеин ом 1Слое Ж Идкой фазы приводит к нарушению работы слоя (при псевдоожижении газом), поэтому печи-теплогенераторы этого типа не используются как плавильные агрегаты. Рас-., смотрим на примере из цветной металлургии массообменный режим этого типа, где он используется при прел варитедьнпй обработке сырьевых териалов, со- . держащих серу и железо, т. е. примесей, удаление которых связано с генерацией тепла в размерах поряд ка 13600 кДж на 1 7775"1Щж на 1 кг — [c.168]

    Массообменный режим в псевдоожиженном слое является обычно полностью автогенным. Принципиально возможны и смешанные топливно-автогенные режимы с использованием как газообразного, так и жидкого или твердого тоолива. Возможно это в тех случаях, когда рабочие температуры слоя приближаются к 1000°С, т. е. к области температур, при которых возможно устойчивое горение. У [c.169]

    Роль насадки в условиях работы при режиме эмульгирования сводится к раздроблению паровых или газовых вихрей на большое число мелких вихрей, пронизывающих жидкость. При этом увеличивается длительность контакта газа с жидкостью и резко увеличивается межфазный тепло- и массообмен. Режим эмульгирования является наиболее выгодным по производительности в касадочных камерах и позволяет значительно интенсифицировать работу насадочных контактных камер. Одновременно при этом возрастает и гидравлическое сопротивление. [c.204]

    В качестве массообменных аппаратов обычно исподьзуются тарельчатые (реже насадочные) абсорберы и десорберы. [c.144]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    Вертикальное расположение колонных аппаратов, обусловившее их название (колонны), диктуется экономией производственных площадей, простотой внутри- и межагрегатных коммуникаций, а также рациональной организацией взаимодействующих потоков в самих аппаратах (движение тяжелой фазы вниз, легкой — вверх). Значительно реже применяются горизонтальные тепло- и массообменные аппараты, особенно секционированные. Областью их преимущественного использования являются процессы высушивания и обжига (барабанные сушилки, обжиговые печи). В отдельных производствах встречаются также барабанные кристаллизаторы, абсорберы, экстракторы, ректификаторы и химические реакторы. [c.14]

    Пространственные неоднородности не только ухудшают качество работы реакторов, но и способствуют появлению неустойчивых режимов. При интенсивном массообмене [189] небольшой по объему очаг высоких температур постоянно распространяется по всему реактору, приводя к тому, что режим, устойчивый в отсутствии неоднородностей, становится неустойчивым, кроме этого, перечисленные выше неоднородности взаимодействуют между собой, в ряде слзгчаев существенно усиливая друг друга. В работе [190] указывается, что глубина проникновения внешних неоднородностей зависит от их начальной величины неравномер- [c.324]

    Так как при этом количество жидкости, находящейся в насадке, во много раз превышает количество жидкости, стекающей в единицу времени, то время контакта фаз также резко возрастает. Вся находящаяся в насадке жидкость пронизывается пузырьками пара и эмульгируется ими, массообмен проходит не на поверхности пленки жидкости, покрывающей насадку, а в зоне свободного объема, заполненного паро-жидкостной эмульсией. Выравнивание концентраций происходит очень быстро. Помимо этого, при увеличении перепада давл1зния возрастает перепад температуры на единицу высоты насадки, улучшая условия тепло-и массообмена.В точке инверсии фаз пар перестает быть сплошной фазой и диспергируется в объеме завихренной жидкости. Режим заполнения насадки паро-жидкостной эмульсией представляет собой режим эмульгирования. [c.409]

    Задача о массообмене сферической частицы со стоксовым потоком при малых числах Re была решена с помощью метода САР в работе [23]. На поверхности сферы рассматривался чисто диффузионный режим поглощения вещества. Для средних значений критерия sh было получено выражение sh = 1 + /г (РеН-РеЧп Pe + -f APe In Ре)+0,068Ре (sh = apJZ)j. Эта работа послужила отправным пунктом ряда исследований, в которых задачи массообмена частиц с поступательным потоком решены методом САР [24—30]. [c.252]

    Формулы (III.39)—(III.40) справедливы лишь для случая, когда потоки фаз равномерно распределены по поперечному сечению аппарата, перемешивание отсутствует и все частицы каждой фазы движутся с одинаковыми скоростями (режим идеального вытеснения). В реальных аппаратах режим движения фаз всегда отличается от идеального и движущая сила процесса зависит от перемешивания. Учет влияния перемешивания на изменение концентраций по высоте (длине) аппарата и соответственно на среднюю движущую силу процесса возможен, если экспериментально определены коэффициенты продольного перемешивания (см. стр. 159). Так как чаще всего экспериментальные данные по перемешиванию отсутствуют, то расчет средней движущей силы процесса массопередачи проводят по формулам (III.39)—(III.40), получая условные коэффициенты массопередачи — Ks и При этом не всегда имеет место пропорциональная зависимость между скоростью процесса и движущей силой, как это должно следовать из уравнения (1) — см. введение. Коэффициент массопередачи в таком случае зависит от концентрации поглощаемого или десорбируемого компонента и это создает дополнительные трудности при обобщении опытных данных и создании научно обоснованных методов расчета массообменных процессов. [c.142]

    Е. Теплообменники с распылением. Эти теплообменники, пожалуй, встречаются реже, чем пленочные аппараты, в которых жидкость всегда находится в контакте с твердой поверхностью лишь при большой скорости газа неизбеж1ю образуется какое-то число капель. Существуют также тепло- и массообменные устройства, в которых основное взаимодействие происходит через капли, образуемые в специальных распылителях и свободно падающие в газообразной среде. [c.11]

    Процессы второй группы обязательно сочетаются с процессами первой группы например, в любом непрерывном процессе всегда присутствуют перемещение твердого материала, смещение или сепарация. В рассматриваемых процессах происходит тепло-, а иногда и массообмен между твердыми частицами и псевдоожижа-ющей средой — газом или жидкостью, а также теплообмен кипящего слоя со стенками аппарата либо погружными теплообменными поверхностями. В большинстве промышленных процессов используется псевдоожижение газом, тогда как псевдоожижение капельной жидкостью (например, при массовой кристаллизации, растворении, некоторых способах очистки сточных вод и др.) используется много реже. Наконец, в совмещенных процессах грануляции — кристаллизации одновременно участвуют твердая, жидкая и газовая фазы (псевдоожижающая среда). [c.209]

    Коэффициент массоотдачи является не физической константой, а кинетической характеристикой, зависящей от физических свойств фазы (плотности, вязкости и др.) и гидродинамических условий в ней (ламинарный или турбулентный режим течения), связанных в свою очередь с физическими свойствами фазы, а также с геометрическими факто1рами, определяемыми конструкцией и размерами массообменного аппарата. Таким образом, величина р является функцией многих переменных, что значительно осложняет расчет или опытное определение коэффициентов массоотдачи. Значениями последних учитывается как молекулярный, так и конвективный перенос вещества в фазе. [c.399]

    Новые перспективы для применения мембран открывает недавно предложенный хроматомембранный метод разделения органических веществ [113,1141, сочетаюищй преимущества парофазного анализа и мембранного концентрирования. В случае реализации данного метода массообмен между жидкой и газовой фазами происходит в пористом блоке, состоящем из полимерного материала. При этом 0беспечива10тся высокая э(1)фективность и непрерывный режим процесса. [c.227]

    Известно, что оптимальный режим работы абсорбционных и ректификационных колонн, при котором достигается максимальный съем продукции с единицы объема массообменной аппаратуры, обеспечивается при нагрузках, близких к предельным. Поэтому максимально допустимая скорость газа (пара), по которой рассчитывают диаметр аппарата, принимают равной 80—85% от скорости захлебывания , т. е. [й ]гаах — 0,85И7пред. [c.409]

    Способ основан на оптимальном сочетании различных видов источников тепла (конвективного и высокочастотного) и осуществляется путем циклического перевода обрабатываемого материала из режима неподвижного слоя ("подготовка к массообмену"), харалте-ризующегося нагревом токами высокой частоты, в режим псевдоожи-женного слоя ("интенсивный массообмен"), характеризующийся подводом конвективной энергии. [c.77]

    При расчете Р. х. определяют необходимые для достижения заданной производительности и селективности процесса объем аппарата, скорость потока, пов-сгь теплообмена, гидравлич. сопротивление, режим работы, конструктивные параметры (уточняются на основании аэродинамич. испытаний). Расчет выполняют на основе данных по термодинамике и кинетике р-ций, скорости тепло- и массообмена (см. Макрокинетика) с учетом структуры потоков в аппаратах. Наиб, полный расчет, проводимый методом моделирования с использованием ЭВМ, включает определение полей т-ры и концентрации, оптим. режима, схемы теплообмена и циркуляции (см. Оптимизация), а также, наряду с выбором способа управления, анализ устойчивости режима. См. также Массообмен, Перемешивание, Печи, Пленочные аппараты, Теплообмен. [c.205]


Смотреть страницы где упоминается термин МАССООБМЕННЫЙ РЕЖИМ: [c.47]    [c.156]    [c.161]    [c.265]    [c.218]    [c.165]    [c.179]    [c.308]    [c.78]    [c.548]    [c.445]   
Смотреть главы в:

Общая теория печей -> МАССООБМЕННЫЙ РЕЖИМ




ПОИСК





Смотрите так же термины и статьи:

Массообмен



© 2025 chem21.info Реклама на сайте