Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные типы химической связи — ионная и ковалентная связи

    Кроме металлической связи, выделяют два основных типа химической связи ионная связь гетерополярная связь) и атомная связь (гомеополярная, или ковалентная, связь). В обоих случаях партнеры связи достигают стабильного октета электронов (правило октета Льюиса, 1916) ). Названные типы связей представляют собой идеальные случаи, между которыми возможны самые различные промежуточные формы связей, например [c.118]


    Итак, в соответствии с типами химической связи и проявляемыми свойствами гидриды по строению и свойствам могут быть разделены на 4 основных класса ионные солеобразные гидриды ковалентные гидриды гидриды с мостиковой водородной связью и гидриды переходных металлов с металлической связью. Кроме того, могут быть выделены промежуточные гидриды. К последним относятся гидриды элементов подгрупп 1В и ИВ, которые являются нестойкими соединениями, обладают в какой-то степени летучестью и по строению и свойствам занимают промежуточное [c.19]

    Глава третья ОСНОВНЫЕ ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ — ИОННАЯ И КОВАЛЕНТНАЯ СВЯЗЬ [c.140]

    Дайте определение основным типам химической связи — ионной и ковалентной. Укажите физические причины возникновения связи между атомами. Приведите примеры двухатомных молекул  [c.5]

    Основные типы химической связи — ионная и ковалентная связи. [c.17]

    Кратко остановимся на основных типах химической связи ионной, ковалентной, молекулярной, водородной, металлической. [c.151]

    В образовании пространственной структуры белков участвуют различные типы химических связей. Основными химическими связями в белках являются ковалентные, дисульфидные связи (-8-8-), образующиеся между -8Н-группами остатков цистеина, водородные, образующиеся за счет электростатических сил притяжения водорода и кислорода разных функциональных групп в белке, а также ионные связи, образующиеся между ионизированными карбоксильными (-ООО") и аминными (-ЫНд) группами аминокислотных радикалов. Выделяют четыре структуры белковых молекул первичную, вторичную, третичную и четвертичную (рис. 88). [c.237]

    Необходимо отметить, что наиболее распространенным типом химической связи является полярная связь. Ковалентная связь встречается значительно реже, в основном в молекулах простых веществ (Нг, С , О2 и т. д.). Точно так же и ионная связь встречается только в соединениях активных металлов с типичными неметаллами. [c.84]

    Теория валентности Льюиса различает два основных типа химической связи ионную и ковалентную. Считают, что причиной образования химической связи является спаривание электронов с образованием стабильных октетов, соответствующих электронной конфигурации благородных газов. Эта идея о спаривании электронов оказала существенное влияние на первые успешные в количественном отношении теории химической связи, которые в сущности и были описанием спаривания электронов на языке волновой механики. Как б дет видно в дальнейшем, спаривание электронов тесно связано со свойством электрона, которое в 1923 г. было еще неизвестно, а именно с его спином. Прежде чем рассматривать современную точку зрения на развитые Льюисом концепции, необходимо обсудить развитие новых идей в физике в период с 1900 по 1930 г. [c.13]


    В молекулах органических веществ основным типом химической связи является ковалентная. Возможны также ионная, водородная и другие химические связи. [c.19]

    Взаимодействие атомов, приводящее к образованию молекул простых и сложных веществ, а также кристаллов, называют химической связью. Взаимодействие атомов многообразно, поэтому многообразны и химические связи, которые часто сводят к нескольким основным типам —ковалентной, ионной, донорно-акцепторной, водородной связи и др. Однако все эти взаимодействия можно описать с позиций единой теории химической связи. Эта теория призвана объяснить, какие силы действуют между атомами, как атомы объединяются в молекулы, что обеспечивает устойчивость образовавшейся сложной частицы (то же относится к кристаллам, жидкостям и другим телам). Теория должна объяснить опытные факты, лежащие в основе клас- [c.50]

    В зависимости от характера распределения электронной плотности в веществе различают три основных типа химической связи ковалентную, ионную и металлическую. Как будет показано дальше, в чистом  [c.56]

    В зависимости от характера распределения электронной плотности в веществе различают три основных типа химической связи ковалентную, ионную и металлическую. В "чистом" виде перечисленные типы связи проявляются редко. В большинстве соединений имеет место наложение разных типов связи. [c.47]

    Но несмотря на эти трудности все же оказывается, что свойства больщинства кристаллов соответствуют одному из четырех основных типов химических связей, т. е. кристаллы можно достаточно обоснованно разделить на ионные, ковалентные, молекулярные и металлические. [c.260]

    Ионная связь — это тип химической связи, энергия которой в основном определяется электростатическими силами притяжения противоположно заряженных ионов Такую связь можно рассматривать как предельный случай ковалентной полярной связи, образованной атомами с сильно различающимися электроотрицательностями [c.71]

    В середине прошлого века, благодаря исследованиям А. М. Бутлерова, В. В. Марковникова, А. Дюма, возникла другая теория, основанная на противоположных представлениях о природе химической связи, а именно теория гомеополярной связи. По современным представлениям, гомеополярная, или ковалентная связь также обусловлена электростатическим взаимодействием. Однако в отличие от ионной, она не определяется взаимодействием между разноименно заряженными частями молекулы. Гомеополярная связь возникает благодаря взаимодействию между внешними электронами атомов, составляющих молекулу, и положительно заряженными атомными остатками, т. е. ионами, образующимися из атомов при удалении внешних электронов. Теории ионной и ковалентной связи противопоставлялись друг другу в течение многих лет, пока в 30-е годы нашего столетия не возникла общая теория, которая объединила эти представления о двух основных типах связи и показала, в каких классах химических соединений преобладает первый тип связи, а в каких — второй. [c.295]

    Рассмотрим классификацию основных типов химической связи. Отметим сразу, что крайних типов химической связи в природе реализовано очень мало. Так, к ионным веществам можно отнести не более 10, к ковалентным-не более 100, к металлическим-порядка 1000 соединений. Всего же природных и искусственных химических соединений известно около 10 млн., следовательно, подавляющее большинство химических веществ построено с помощью промежуточных химических связей-ионно-ковалентных, ковалентно-металлических, ионно-металлических. Рассмотрим кратко экспериментальные критерии этих связей. [c.195]

    Различают три основных типа химической связи ковалентную, ионную и металлическую. [c.81]

    ПЬ типу химической связи между их внутренней и внешней сферами ато-соединения могут быть ионными, ионно-ковалентными и ковалентными. Если анионный комплекс достаточно устойчив, то рассматриваемые соединения по основно-кислотным свойствам подобны бинарным. Так, производные щелочных и щелочноземельных металлов являются основными, а производные неметаллических элементов — кислотными. Сказанное подтверждают их сольволиз и реакции взаимодействия производных анионных комплексов различной основно-кислотной, природы, например  [c.279]

    Особый тип химической связи наблюдается в металлах. Металлические кристаллы характеризуются большим числом весьма полезных свойств, которые сделали их незаменимым материалом для человечества. К ним относятся высокая отражательная способность, высокая пластичность (способность вытягиваться в проволоку), ковкость, высокие теплопроводность и электропроводность. Эти свойства обусловлены особенностями металлического типа химической связи. Одна из них, как уже упоминалось, обязана высокой подвижности электронов, которая, по-видимому, приводит к тому, что кристаллические решетки металлов не являются такими жесткими, как у типичных ионных или ковалентных кристаллов. Отметим также важную особенность металлов — их способность образовывать сплавы, т. е. давать однородные твердые растворы, отличающиеся новыми, полезными свойствами. Например, сталь — главный конструкционный материал современной техники — представляет собой в основном твердый раствор углерода в железе. Огромную роль на начальных этапах истории человечества сыграли плавящиеся при относительно низкой температуре сплавы меди и олова, т. е. бронза (бронзовый век). [c.163]


    Между атомами могут возникать различные взаимодействия в зависимости от их физико-химических характеристик (с. 63), а главным образом от значений злектроотрицательности (ЭО), определяющей ориентировку электронов относительно атомов, уже вошедших в состав молекулы. Основными видами связи можно считать связи, устанавливающиеся между атомами, вступающими в соединение между собой. Таких связей три вида а) ковалентная неполярная связь б) ковалентная полярная и в) ионная связь. К основным видам связи следует отнести и металлическую связь, однако она характерна не для замкнутых молекул, а для кристаллов металлического типа. Вообще говоря, ионная связь также характерна для кристаллического состояния веществ. [c.72]

    Рассмотренные ранее основные типы химической связи (ионная, ковалентная, металлическая и вандер-ваальсова) — лишь предельные типы, которые далеко не всегда проявляются в чистом виде чаще всего в реальных кристаллах осуществляются разнообразные случаи связей переходного характера. [c.119]

    Наряду с взаимодействиями, которые существуют в металлах, выделяют два основных типа химической связи ионную (гетеро-полярную) и атомную (гомеополярную или ковалентную). И в том и в другом случае обоими партнерами, образующими связь, достигается стабильная восьмиэлектронная оболочка (правило окте- [c.196]

    Из экспериментальных данных следует, что суш ествуют два основных типа химической связи — ионная и ковалентная. Молекулы, обладающие ионными связями, диссоциируют на ионы в полярных растворах молекулы же с ковалентными связями такой диссоциации не обнаруживают. Согласно теории валентности Льюиса, атомы в случае ионной связи удерживаются кулоновскимисилами, в случае же ковалентной связи — общей парой электронов, так что приходится вводить в рассмотрение какие-то новые си.лы (это определение включает и так называемую координационную связь). Как будет видно в дальнейшем, нроисхождение этих сил можно объяснить квантовомеханически, а понятия 1ЮНН0Й и ковалентной связей относятся лишь к предельным случаям реальные же связи носят промежуточный характер. [c.58]

    При рассмотрении общих свойств твердой фазы следует исходить из химической классификации межатомных связей, согласно которой основными типами связей являются ионная, ковалентная, металлическая и вандерваальсова. Хотя проще и удобнее рассматривать однотипные связи, следует помнить, что это упрощенный подход и что чаще всего химические связи имеют промежуточный характер. [c.11]

    Свойства кристалла зависят не только от способа упаковки ионов, атомов или молекул в кристаллической рещетке, но и от природы сил, действующих между ними. Различают четыре основных типа химической связи в кристаллических телах ионная, ковалентная, металлическая и ван-дер-ваальсова (межмолекулярная). Кроме того, существуют связи промежуточного типа. Тип связи зависит главным образом от конфигурации электронных оболочек структурных единиц кристалла. Преобладающий харак тер связи определяет многие свойства кристалла, например твердость, температуру плавления, электрические свойства и др. [c.180]

    Для Сг (III) характерна преимущественная координация азот- н кислородсодержащих аддендов, с которыми он образует прочные ковалентные связи. Однако эти связи отличаются меньшей прочностью, чем в соединениях платиновых металлов. Следствием этого является возможность проявления оптической и геометрической изомерии. Вследствие значительной стереохи-мической определенности этих соединений и высокой степени ковалентности связи центральный ион — адденд возможно, что химические свойства этих соединений окажутся объясненными с позиций закономерности трансвлияния. Однако для окончательного суждения о справедливости этой закономерности в химии хрома требуется систематическое исследование соединений Сг (III), Примеры основных типов комплексов Сг (III) даны в табл, 64. В шестивалентном состоянии хром дает многочисленные изополисоединения, например КгСгзОю. [c.208]

    Следуя принятой систематике на основании преимущественного типа химической связи, все бинарные водородные соединения можно разделить на 3 основных класса солеобразные (ионные), металлоподобные и летучие (ковалентные). Первые два класса являются собственно гидридами, а в последнем, как отмечено выше, водород функционирует преимущественно в качестве катионообразователя. Солеобразные гидриды образуются при непосредственном соединении с водородом щелочных и щелочно-земельных металлов. Водород в солеобразных гидридах формально функционирует как галогены, однако связь здесь носит менее ионный характер. Тем не менее гидриды щелочных металлов образуют кристаллические структуры типа Na l, а гидриды щелочно-земельных металлов — более сложные слоистые структуры. Состав солеобразных гидридов отвечает правилам формальной валентности, причем водород здесь имеет степень окисления —1. Характерной особенностью солеобразных гидридов в отличие от галогенидов является способность энергично взаимодействовать с водой с выделением водорода  [c.64]

    Систематизируя кис.лородные соединения элементов по доминирующему типу химической связи, можно выделить три основных типа соединений с металлической, преимущественно ионной и ковалентной связью. К характеристическим соединениям относятся только оксиды, подчиняющиеся правилу формальной валентности. В характеристических оксидах доминирующим типом связи являет ся ионно-ковалентная, поэтому их можно подразделить на два типа с преимущественно ионной и преимущественно ковалентной связью. Последние, в свою очередь, по структурному признаку подразделяются на координационные и молекулярные (например, SiO . и СО2). Ионные оксиды всегда имеют координационную структуру. Ионно-ковалентное взаимодействие характерно и для анионоизбыточных кислородных соединений, однако они обладают особыми свойствами и обычно рассматриваются отдельно. Такую же специфическую группу составляют и металлоподобные оксиды. Принимая во внимание зависимость типа кристаллической структуры оксидов от характера химической связи, можно сделать вывод, что в немолекулярных структурах с ковалентной связью координационные числа не должны превышать 4, а в ионных кристаллических решетках реализуются более высокие координационные числа. Так, в кубической структуре Si02 (/i -кристобалит) к.ч (Si) 4, а к.ч. (О) 2 (рис. 130), в структуре Т1О2 (рутил) к.ч. (Ti) [c.266]


Смотреть страницы где упоминается термин Основные типы химической связи — ионная и ковалентная связи: [c.40]    [c.110]    [c.209]    [c.40]    [c.73]    [c.403]    [c.52]   
Смотреть главы в:

Строение вещества -> Основные типы химической связи — ионная и ковалентная связи




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Ковалентность

Основные типы химической связи

Связей типы ионные

Связи ковалентные Связи

Связь ковалентная

ХИМИЧЕСКАЯ СВЯЗЬ Ионная связь

Химическая ионная

Химическая ковалентная

Химическая связь

Химическая связь ионная

Химическая связь ковалентная

Химическая связь связь

Химический связь Связь химическая

типы связ



© 2024 chem21.info Реклама на сайте