Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Действие света на полимеры

    Фотодеструкция полимеров. Под действием света в полимере происходят разнообразные превращения, которые в конечном счете приводят к его разрушению. Солнечный свет несет кванты с X >200 нм. Насыщенные углеводородные молекулы в этой области свет не поглощают. Свет с X > 200 нм поглощают кислородсодержащие группы, азотсодержащие группы, двойные связи, ароматические ядра, примеси соединений металлов (например, остатки катализатора), случайно попавшие ароматические соединения и т. д. Поглощение света приводит к образованию радикалов и сопровождается деструкцией полимера, например  [c.245]


    Полиметилакрилат и полиметилметакрилат — твердые, бесцветные, прозрачные, стойкие к нагреванию и действию света, пропускающие ультрафиолетовые лучи полимеры. Из них изготовляют листы прочного и легкого органического стекла, широко применяемого для различных изделий. Из полиакрилонитрила получают нитрон (или орлон) — синтетическое волокно, идущее на производство трикотажа, тканей (костюмных и технических). [c.502]

    При нагревании выше 140 °С происходит деструкция поливинилхлорида, сопровождающаяся выделением хлористого водорода, что затрудняет его переработку, так как температура текучести полимера (150—160 °С) выше температуры разложения. Деструкция полимера сопровождается изменением окраски (от желтой до коричневой) и ухудшением растворимости. Поливинилхлорид деструктируется также под действием света. [c.28]

    Химические реакции в полимерах могут быть вызваны действием света. При малой длине волны светового излучения кванты света могут вызвать отрыв боковых активных атомов или групп от макромолекул или разрыв макромолекул. В результате инициируются цепные реакции деструкции или присоединения мономеров к макрорадикалам полимерных молекул. Обычно такие изменения вызываются излучением света с длинами волн 230— 410 нм. При повышении температуры резко ускоряется процесс деструкции, который в этом случае называется фотолизом. Облучение растворов каучука ультрафиолетовым светом в инертной среде приводит к снижению их вязкости, что объясняется образованием более коротких молекул в результате деструкции. В результате облучения светом может происходить сшивание макромолекул. Так, полиизопрен при действии солнечного света размягчается и становится липким. При облучении его кварцевой лампой в вакууме при комнатной температуре выделяются летучие продукты распада, среди которых до 80% приходится на молекулярный водород. При облучении ультрафиолетовым светом толуольных растворов полиизопрена наблюдается уменьшение их вязкости, связанное со снижением молекулярной массы полиизопрена (натуральный каучук). В концентрированных растворах после снижения молекулярной массы отмечен ее рост, что связано с формированием нерастворимой фракции (гель) при соединении макромолекул полиизопрена в сетчатую структуру. [c.242]

    В процессе хранения и эксплуатации изделий из полимеров под действием света, теплоты, радиоактивных излучений, кислорода, различных химических вешеств может происходить излишне глубокое сшивание макромолекул, которое также является причиной ухудшения свойств полимера появляется хрупкость, жесткость, резко снижается способность к кристаллизации. В итоге наблюдается потеря работоспособности изделий из полимеров. Поэтому проблема защиты полимеров от вредных воздействий различных структурирующих и деструктирующих факторов имеет самое актуальное значение. Нежелательное изменение структуры полимеров увеличивается при приложении к ним неразрушающих механических напряжений, приводящих к развитию деформаций. Особенно этот эффект заметен при приложении многократно повторяющихся механических напряжений. При этом протекает деструкция и сшивание цепей, образуются разветвленные структуры, обрывки беспорядочно сшитых макромолекул, что изменяет н целом исходную молекулярную структуру полимера. Все эти нежелательные изменения приводят к старению полимеров. [c.239]


    Действие света на полимеры [c.242]

    Растворяя подвергнутый действию света полимер, получают рельефное изображение фотографируемого объекта. Этот принцип используется в полиграфии для изготовления пластмассовых или металлических (с помощью травления кислотой) матриц, а также в радиоэлектронике для изготовления микромодульных элементов печатных схем. Фоторезисты, не обладая в отличие от других светочувствительных материалов зернистой структурой, позволяют получать рельефное изображение с разрешающей способностью, измеряемой нанометрами (молекулярный уровень). [c.272]

    Пластмассы характеризуются способностью под давлением при нагревании принимать любую форму, после охлаждения и снятия давления форма сохраняется. При массовом производстве изделий одинаковой формы и размеров применение пластмасс обеспечивает высокую производительность труда и снижение стоимости готовых изделий. Полимеры и материалы на их основе чувствительны к действию тепла, света и окислителей, к облучению частицами высокой энергии. Большинство полимеров имеет теплостойкость не выше 100—120°С, исключение составляют фторопласты, полиэфирные и элементорганические полимеры. Под действием света, тепла, окислителей в полимерах могут происходить процессы разрыва макромолекул — деструкция и сшивание макромолекул — структурирование, при которых полимер теряет эластичность и гибкость. Эти явления называются старением полимеров. Чтобы замедлить старение, в полимеры и пластмассы вводят специальные вещества — стабилизаторы (например, замещенные фенолы, ароматические амины и т. п.). [c.338]

    Механизмы действия и эффективность светостабилизаторов основных классов в легко окисляющихся под действием света полимерах [c.377]

    Под действием света с длиной волны до 4000 А постепенно уменьшается растворимость и повышается твердость полимера. Очевидно, действие световых лучей способствует раскрытию части ненасыщенных связей, оставшихся в каждом звене макромолекул, и присоединению отдельных цепей друг к другу  [c.237]

    Такой светостабилизатор, как гексаметилтриамид фосфорной кислоты (механизм действия которого неясен), в комбинации с соответствующими термостабилизаторами превосходит стабилизирующую систему с абсорберами на основе бензофенона, как было показано на примере пластифицированного ПВХ 114. Добавка этого продукта окрашивает полимер в слабо-желтый цвет, но под действием света полимер обесцвечивается и может оставаться совершенно бесцветным даже после семилетнего естественного старения (при удачном выборе рецептуры). [c.383]

    Прежде всего было установлено, что во время низкотемпературного радиолиза органических веществ (независимо от их молекулярной массы) в них, так же как и в неорганических веществах, происходит стабилизация положительных и отрицательных зарядов (ионов, дырок и электронов). Об этом свидетельствует изменение краски облученных образцов, их термолюминесценция при разогреве, фотолюминесценция при низких температурах, уменьшение окраски и РТЛ под действием света, изменение электрической проводимости, а также результаты анализа спектров электронного парамагнитного резонанса (ЭПР) облученных полимеров и низкомолекулярных органических веществ [9.7]. [c.236]

    Фойгт И. Стабилизация синтетических полимеров против действия света и тепла. Л., Химия , 1972. 544 с. [c.648]

    Стирол очень легко, особенно при нагревании и под действием света, полимеризуется, образуя высокомолекулярный прозрачный полимер — полистирол [c.343]

    АКРИЛАТЫ — эфиры акриловой кислоты общей формулы СНа СН—СООР, где / — алкильный радикал. А. легко полимеризуются под действием света, тепла, кислорода, пероксидов. Широко применяются для производства полимеров (см. Полиакрилаты).  [c.12]

    Химические реакции в полимерах при действии света и ионизирующих излучений [c.242]

    Наше краткое изучение фотохимии полимеров заканчивается двумя темами, касающимися долговечности полимеров вне помещений. Большинство органических полимеров претерпевает химическое изменение, или фотодеструкцию, под действием видимого или УФ-излучения, особенно в присутствии атмосферного кислорода. В результате механические свойства полимера в объеме ухудшаются. Для некоторых приложений долговечность является важным параметром, например в строительстве или автомобилестроении. Поэтому желательно продлить полезную продолжительность жизни материала с помощью фотостабилизации. В то же время существуют также экологические проблемы, связанные с устойчивостью пластиков, применяемых в сельском хозяйстве, и пластиковых упаковочных материалов после их использования. Следовательно, полимеры могут быть намеренно сделаны светочувствительными. Использование фотодеструктирующих пластмасс позволяет сделать предметы типа пластмассовых кружек очень недолговечными — под действием света они рассыпаются в тонкий порошок и развеиваются. [c.262]

    Окислительная деструкция является одной из основных причин старения полимеров и выхода из строя многих полимерных изделий. Поэтому проблема защиты полимеров от старения является комплексной. Учитывая все известные виды деструктирующих воздействий на полимеры, можно заключить, что главными из них являются термическая и термоокислительная деструкция, усиливающиеся при одновременном действии света. Эти процессы протекают главным образом по механизму цепных радикальных реакций. Следовательно, меры защиты должны быть в первую очередь направлены на подавление этих реакций в полимерах. Высокомолекулярная природа полимеров является причиной того, что очень малые количества низкомолекулярных химических реагентов способны вызывать существенные изменения физических и механиче- [c.266]


    Под действием света легко деструктируются полимеры, в которых образовались карбонильные группы, ослабляющие соседние С — С-связи  [c.89]

    Для защиты полимеров от действия света применяют специальные вещества — стабилизаторы. Их действие основано на способности поглощать ультрафиолетовые лучи и задерживать проникновение лучей к частицам полимера. Сами стабилизаторы устойчивы к действию света, т. е. не разлагаются и не инициируют деструкцию полимера. [c.91]

    Под действием света, тепла, а также активирующих агентов (перекисных соединений) хлористый винил превращается в полимер  [c.123]

    Под действием света хлористый винил полимеризуется, образуя высокомолекулярный полимер полихлорвинил, или поливинилхлорид) [c.100]

    Сохранение пластичности, морозостойкости, огнестойкости и других свойств в широком диапазоне температур Повышение термостойкости, устойчивости к действию света, кислорода воздуха и других агентов Создание трехмерной структуры в полимере [c.217]

    Фотохимическая деструкция. Такие процессы деструкции полимеров имеют очень большое практическое значение, так как при эксплуатации полимеры почти всегда подвергаются действию света. Реакции, протекающие при облучении полимеров, играют большую роль в процессах старения полимеров и часто определяют срок службы природных и синтетических волокон, изделий из резины и пластических масс, лакокрасочных покрытий. [c.290]

    Особенно сильно развиваются эти процессы при повышенных температурах, под действием света и при механических нагрузках. В настоящее время разработаны антиоксиданты для снижения окисляемости полимеров и вещества, понижающие действие поглощения света (фотоокисление). [c.502]

    Уже отмечалось, что важнейшая особенность полимеров— способность к пленкообразованию. Это свойство используется в производстве лаков и клеев. Производство синтетических лаков и клеев основано на растворимости полимеров в органических растворителях. Высыхание пленки и образование блестящего эластичного покрытия (лаки) или прочного шва (клеи) происходит либо только в результате испарения растворителя, либо может быть связано с превращением линейной структуры макромолекул в трехмерную. Последние превращения протекают при нагревании, под действием света, кислорода воздуха, а также в присутствии катализаторов. Выбор синтетических смол для покрытия и склеивания различных материалов определяется рядом свойств полимера адгезией (прилипаемость к покрываемому или склеиваемому материалу), эластичностью, механической прочностью, нерастворимостью, термостойкостью и т. д. [c.501]

    Действие на полимеры света и ионизирующих излучений [c.64]

    Некоторые вещества, например сажа, катализируют реакции обрыва цепи. Эффективность стабилизаторов этого типа обычно невелика. Кроме этого, сажа защищает полимер от действия света и катализирует окисление стабилизаторов типа аминов и фенолов кислородом. Первый из этих процессов полезен, второй — вреден. [c.100]

    Прямое изображение позволяет получать вещества, полимери-зующиеся под действием света,— позитивные резисты. Например, поливинилцинномат (I) [c.138]

    Фотохимическая деструкция имеет большое практическое значение. Изделия из полимерных материалов при эксплуатации на воздухе всегда подвергаются действию света. Это приводит к их преждевременному старению , связанному с разрывом полимерной цепи под действием энергии света с длиной волны от 300 до 400 нм. При этом активными центрами чаще всего являются карбонильные и другие кислородсодержащие группы. В реальных условиях необходимо учитывать и влияние кислорода воздуха, который способствует окислению полимера (фотоокисление). Фотохимическая деструкция, протекающая по цепному радикальному механизму, вызы- [c.410]

    Многие синтетические полимеры являются устойчивыми к действию света, тепла, влаги кислорода воздуха в течение многих лет. Даже разрушаясь механически, они не расщепляются на столь малые участки, чтобы они были использованы в пищу микроорганизмами. Все это загрязняет окружающую среду. Поэтому в настоящее время одной из важных проблем в химии полимеров является их утилизация. Для этого используют различные методы сжигание использованных полимеров, вторичная их переработка в качестве добавок в новые композиционные материалы (строительные, кровельные материалы и др.). Например, мелкую крошку резины отработавших автомобильных шин добавляют в материалы для покрытия дорог, каучук при производстве новых шин. Важным направлением по защите окружающей среды от вредного воздействия неразру-шаемых синтетических полимеров является создание таких полимеров, которые были бы склонны к биоразложению. К таким полимерам относятся сложные полиэфиры  [c.609]

    Карбамидные полимеры получают поликонденсацией мочевины (карбамида) С0(ЫН2)г и формальдегида СНаО. В зависимости от условий процесса можно получить как термопластичные полимеры, так и термореактиБНые. По сравнению с феноло-формальдегидными полимерами карбамидные полимеры устойчивы к действию света, более тверды и не имеют запаха. [c.204]

    Кинетический анализ процесса окисления полимеров также показывает, что он характеризуется признаками цепных радикальных реакций. Так, на кинетической кривой присоединения кислорода к полимеру имеется индукционный период, величина которого может быть увеличена в присутствии ингибитора (рис. 18.1). Окисление ускоряется также при освещении, причем после удаления источника света имеется так называемый постэффект действия света (18.2). [c.258]

    При УФ-экспонировании слоя ЦПИ, содержащего соединение (II) в том же соотношении оказалось, что уже через 15 мин наблюдалась дифференциация растворимости в спирте облученных и необлученных участков пленки, обусловленная фотоструктурированием ЦПИ в местах экспонирования. Следует отметить резкие различия в наклоне интегральных сенситометрических кривых для слоев ЦПИ с соединениями (I) и (И). В слоях, содержащих бис-лактонное производное (И), фотопроцесс протекает с меньшей скоростью. Известно [8], что эфиры лактонов под действием света или термически в присутствии кислот Льюиса, подвергаются внутримолекулярной перегруппировке Фриса. Для соединения (II) можно предположить тот же радикальный механизм фотопревращения. Возбуждение светом приводит к гомолитическому расщеплению связи о-карбонил с последующей миграцией ацила в ядро. Первоначально оба радикала (фенок-си- и карбонильный) остаются в клетке растворителя или полимера. Внутриклеточное взаимодействие, эффективно реализуемое в жесткой полимерной клетке, ведет к получению оксикетонов [9,10]. Образование о-оксиарилкетонной группы при фотохимической перегруппировке Фриса свидетельствует о возникновении "эффекта самостабилизации" [11] за счет образования сильной водородной связи С=0 - Н0. Вследствие этого производное (II) играет роль УФ-абсорбера, однако 8 ор для слоя композиции (ЦПИ) (П) составляет Т370 см /мДж, т.е. (II) играет роль слабого фотосенсибилизатора. [c.148]

    Полимер устойчив к действию света, атмосферных условий, растворов кислот, щелочей, стоек в бензине и маслах. При 120—160° листы полимера можно штамповать, сохраняя их оптические свойства. Склеивание листов производят 2%-пым раствором полиметилметакрилата в дихлорэтане, сваривание — приплавлением листов при 180—185° и давлении в 2—4 кг/см . Изделия легко поддаются любой механической обработке. Для снижения хрупкости и повышения механической прочности органического стекла листы полимера подвергают многоосной вытяжке (рис. XII.39) при температуре 110-120° [128, 131]. [c.825]

    Хлористый винил СН2=СНС1 при действии света или при нагревании образует полимер в виде белого аморфного порошка. [c.117]

    Стирол легко полимериэуется в прозрачные стекловидные смолы. Полимеризация ускоряется прн действии света, при иагреваиии в присутствии перекиси беизоила, перекиси водорода и других катализаторов. Под влиянием этих факторов полимеризация стирола заканчивается в течение нескольких часов. Природа полимера зависит от применяемых катализатора, растворителя, температуры и т. д. [c.310]

    Фотохим. Д. п. (фотодеструкция) обусловлена наличием практически во всех макромолекулах групп, способных поглощать свет. Наиб, ингспс.ивгю она идет под действием света с короткой длиной волиы (ме.нее 400 нм), ее усиливают примесн сенсибили.заторов. Разрыв макромолекул под действием мех. напряжений (механич. Д. п.) возникает, напр., при вальцевании полимеров, [c.152]


Смотреть страницы где упоминается термин Действие света на полимеры: [c.356]    [c.488]    [c.144]    [c.244]    [c.126]   
Смотреть главы в:

Химия и физика полимеров -> Действие света на полимеры




ПОИСК







© 2024 chem21.info Реклама на сайте