Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация фактор

    Ряд примесей, таких, как парафиновые и олефиновые углеводороды, замедляет реакцию полимеризации (фактор разбавления). Тормозит процесс полимеризации и углекислый газ, содержание его до 0,25% вес. уменьшает скорость реакции почти вдвое [91]. [c.243]

    Если изобутилен в смеси с четыреххлористым углеродом подвергнуть воздействию вызывающих полимеризацию факторов (присутствие перекисных соединений, повышенные температура и давление), то образуются теломеры, содержащие по длине-цепи в среднем 8,6 молей изобутилена на 1 моль четыреххлористого углерода [266]. [c.219]


    Применение метода абсорбционной спектроскопии не ограничивается только определением концентраций веществ. В результате поглощения излучения энергия систем з1 меняется настолько незначительно, что это не приводит обычно к нарушению целостности молекул поглощающего вещества. Однако в результате смещения химического равновесия в растворе под влиянием различных факторов его поглощающие свойства могут изменяться весьма значительно. На этом основано применение метода абсорбционной спектроскопии для изучения равновесий в растворах, реакций гидролиза и полимеризации, определения состава комплексных соединений, их констант устойчивости и т. п. . В данной главе рассматривается только метод абсорбционной спектроскопии как один из методов количественного анализа. [c.458]

    В нефтехимических производствах в качестве исходного сырья и полупродуктов широко применяются непредельные углеводороды. В присутствии катализаторов они полимеризуются, образуя полимеры. Однако частичные полимеризация и поликонденсация углеводородов могут протекать и без катализаторов под воздействием температуры и других факторов. При осуществлении некоторых процессов образуются высококипящие продукты, которые при дальнейшей переработке осмо-ляются. [c.121]

    Важная роль трех основных стадий реакции (инициирование, развитие и обрыв) как факторов, определяющих скорость реакции, рассматривается ниже. Назначение стадии инициирования заключается в образовании активных центров, каждый из которых возбуждает периодически повторяющиеся циклы реакции. В основном общая скорость окисления является функцией числа активных центров, образующихся в единицу времени (скорость инициирования Г ) из числа повторений каждого цикла. Последний фактор представляет собой кинетическую длину цепи Ь). Точно так же, общая скорость окисления определяется произведением скорости полимеризации на длину цени [c.288]

    Бирадикальный механизм находится в соответствии с общей нечувствительностью реакции к растворителям и катализаторам. Он также правильно предсказывает течение реакции в случаях возможного образования двух изомеров, основываясь на двух факторах, которые более детально обсуждаются в разделе, посвященном сополимеризации. Одним из них является ожидаемая тенденция, что такая реакция идет через образование наиболее резонансно стабильного радикала [например, один непарный электрон, конъюгированный с карбонильной группой в реакции 15)]. Другим фактором является способность полярных резонансных структур повышать стабильность переходного состояния радикалов, это ведет к образованию того же изомера, что и предсказанный на основе полярного механизма. Отмечалась также близкая аналогия между радикальным механизмом и термическим инициированием процесса, наблюдающихся в некоторых случаях реакции полимеризации [36]. В качестве аргумента против такого механизма было выставлено то, что инициаторы радикалов, подобные перекиси бензоила, не ускоряют реакцию Дильса-Альдера. Однако это фактически не относится к обсуждаемому вопросу, так как реакция включает стадию (15), являющуюся процессом термического образования бирадикала, который в большей степени, чем любой другой процесс, мог бы быть инициирован присоединением посторонних радикалов по двойной связи. [c.181]


Рис. У-7. Зависимость константы скорости реакции полимеризации пропилена от различных факторов (к задаче У-15) Рис. У-7. <a href="/info/9213">Зависимость константы скорости реакции</a> <a href="/info/1265401">полимеризации пропилена</a> от <a href="/info/30348">различных факторов</a> (к задаче У-15)
    Легкость, с которой проходит полимеризация, увеличивается при наличии следующих факторов [317, 318]. [c.106]

    Известно немало данных о влиянии различных факторов на скорость полимеризации, полученных при разработке практических систем эмульсионной полимеризации. Эти данные не всегда сопоставимы из-за проведения опытов в разных условиях. [c.153]

    Основным фактором, определяющим микроструктуру цепи полибутадиенов при радикальной полимеризации, является температура процесса (табл. 1). [c.176]

    Важнейшим фактором, влияющим на направление реакций полимеризации изопрена под влиянием литийорганических соединений, является чистота мономера и углеводородного растворителя. Вещества электронодонорного характера даже в очень малых количествах снижают стереоселективность действия катализатора, а при проведении полимеризации в среде электронодоноров в полиизопрене отсутствуют цмс-1,4-звенья (табл. 3). [c.209]

    Эмульсионная полимеризация. Во всех странах для производства хлоропренового каучука применяется эмульсионный способ полимеризации хлоропрена под влиянием инициаторов, реагирующих по свободнорадикальному механизму, с использованием в качестве регуляторов серы или меркаптанов. Одним из основных факторов, определяющих возможность проведения процесса полимеризации в эмульсии является подбор эффективных эмульгаторов, обеспечивающих стабильность эмульсии и латекса в процессе полимеризации. [c.371]

    Влияние регуляторов молекулярной массы. Основными факторами, определяющими структуру и свойства полимеров хлоропрена (пластичность, растворимость, стойкость и др.), кроме температуры полимеризации является природа применяемого регулятора и конверсия хлоропрена. [c.373]

    Скорость протекания этих двух конкурирующих реакций (деструкции и структурирования) определяется рядом факторов степенью распределения тиурама вг латексе, скоростью набухания частиц полимера в растворителе, применяемом для получения эмульсии или дисперсии тиурама Е, скоростью взаимодействия тиурама с полисульфидной группой, продолжительностью и температурой щелочного созревания латекса. Наряду с указанными факторами в значительной степени влияет глубина полимеризации с увеличением конверсии хлоропрена выше определенного предела возрастает тенденция к структурированию полимеров [17, 26]. Аналогично влияет и повышение температуры полимеризации, способствующей в большей степени увеличению скорости структурирования, чем деструкции полихлоропрена. Указанные факторы оказывают также влияние на молекулярно-массовое распределение полимера [26]. ------- [c.374]

    Влияние перечисленных факторов может быть предотвращено путем тщательной очистки хлоропрена, хранением и полимеризацией в среде тщательно очищенного инертного газа и путем соблюдения строго регламентированных условий процесса, из которых особенно большое значение имеет обрыв полимеризации при оптимальной конверсии, зависящей от природы применяемого регулятора (88—90% для полимеров регулированных серой и 70—75% меркаптанами). [c.380]

    На основании проведенных исследований закономерностей процессов полимеризации хлоропрена разработаны способы получения каучуков и латексов большого ассортимента, причем некоторые из них, обладающие комплексом ценных свойств, не были ранее описаны в литературе и получены впервые. Специфические особенности различных типов каучуков определяются следую--щими факторами 1) природой применяемых регуляторов (сера, меркаптаны) и их содержанием в полимере 2) температурой полимеризации (0- -5 или 40 °С) 3) составом и содержанием стабилизаторов 4) рецептурой реакционной смеси и условиями полимеризации 5) природой сомономеров и составом сополимеров. [c.383]

    Микроструктура полибутадиенов каталитической полимеризации, полученных с использованием различных катализаторов, существенным образом зависит как от самого катализатора, так и от растворителя и других факторов (см. стр. 417). [c.436]

    Какие же факторы благоприятствуют полимеризации  [c.96]

    При рассмотрении математической модели процесса полимеризации [И] было установлено, что на распределение молекулярных весов влияют два противоположно действующих фактора, а именно  [c.115]

    Роль второго фактора менее очевидна. Существенным моментом является то, что в реакторе смешения концентрация мономера остается постоянной, и при тех же условиях проведения процесса средняя величина ее меньше, чем в реакторе периодического действия. Следствием является уменьшение интервала изменения молекулярных весов в случае многих типов кинетических уравнений реакции полимеризации. [c.115]


    Какой из этих факторов будет превалирующим, зависит от типа реакции полимеризации. Если в процессе реакции не происходит обрыва цепей, как, например, при поликонденсации, то доминирующим является первый фактор, что приводит к более широкому диапазону изменения молекулярных весов в реакторе смешения по сравнению с реактором периодического действия. Именно так обстоит дело при полимеризации мономеров типа НО— ( Hi) —СООН, когда рост цепочки происходит в результате последовательной этерификации с выделением воды [c.115]

    Для изучения влияния отдельных факторов на процесс гетерофазной эмульсионной полимеризации, сопровождающийся диффузионными потоками мономера в каждой из фаз, система решалась при различных значениях безразмерных параметров модели. Некоторые результаты расчета представлены на рис. 3.4—3.6. [c.156]

    КИМ образом, они могут протекать самопроизвольно под действием энергетического фактора прн противодействии энтропийного( 95). Так как влияние энтропийного фактора относительно возрастает с повышением температуры, то при достаточно высоких температурах (при атмосферном давлении) вместо образования полимера становится термодинамически возможным обратный процесс деструкции (разложения). Эта температура в общем тем ниже, чем меньше теплота полимеризации, с поправкой на различие в значениях энтропии полимеризации. Тепловые эффекты процессов полимеризации для некоторых полимеров приведены в табл, 65. [c.561]

    При эмульсионной полимеризации винилхлорида скорость процесса и свойства полимера зависят от природы и концентрации эмульгатора и инициатора, от pH среды, от соотношения винилхлорида и водной среды (водный модуль), от температуры и других факторов. [c.26]

    Чистота е-капролактама является важнейшим фактором. Наличие влаги в е-капролактаме в сильной степени препятствует полимеризации вследствие разложения катализатора в ее присутствии. Поэтому перед полимеризацией е-капролактам тщательно высушивают путем барботирования через него инертного газа при температуре выше 100°С или под вакуумом. С увеличением количества катализатора скорость полимеризации возрастает, однако показатели физико-механических свойств полимера значительно ухудшаются уменьшается и его выход. Оптимальная концентрация каталитической системы равна 0,6 мол. % (от количества е-капролактама) при эквимольном соотношении компонентов. [c.82]

    Повышение регулярности микроструктуры полимерных цепей с понижением температуры полимеризации касается не только соотношения построений голова—хвост и голова—голова . Переход в область более низких температур полимеризации позволяет noBbi iiTb содержание синдиотактических последовательностей. В условиях обычной радикальной полимеризации факторы, способствующие направленной реакции роста, т. е. образованию стереорегулярных полимеров, весьма слабы. Соображения, приведенные выше в связи с преимущественным при- [c.234]

    В случае очень больших тепловыделений, как, например, в процессе полимеризации этилена в полиэтилен, вопрос отвода тепла может оказаться онределяюш,им фактором в конструктивном оформ-, Ленин и расчете реактора. Так, обш ая длина змеевикового реактора для производства полиэтилена высокого давления (в. д.) определяется необходимой поверхностью теплоотвода. [c.271]

    Вдоль всех поверхности теплообмена обеспечивается интенсивный съем тепла при помощп горячего парового конденсата, циркулирующего через охлаждающие рубашки змеевика. Проведение процесса в змеевике, составленном из труб небольшого диаметра, обеспечивает большую удельную поверхность охлаждения. Для полимеризации этилена это особенно важно, поскольку тепловой эффект реакции может достигать 1000 ккал кг п своевременный и быстрый отвод тепла является решающим фактором для данного процесса. Часть избыточного тепла отводится также рециркулирующим этиленом. [c.277]

    Таким образом ароматизацию, важный фактор повышения октанового числа бензинов каталитического крекинга, можно охарактеризовать, как вторичную реакцию, идущую через стадию полимеризации или конденсации олефинов, получаемых при крекинге различных исходных соединений. Простые циклоолефины С5 и Се, циклонентен и циклогексен 16] образуют значительное количество ароматических углеводородов, но с относнтельио высокой температурой кипения, что может быть результатом быстрой полимеризации или конденсации таких олефинов, с последующей изомеризацией кольца, переносом водорода и крекингом. [c.135]

    Энергетически реакции типа (1) обычно очень удобны, так как при полимеризации олефина выделяется от 12 до 23 ккал на 1 моль при незначительном снижении энтропии, так что при обычных температурах снижение свободной энергии составляет 2—13 ккал1моль [34]. С другой стороны, несомненно, для превращения олефинов в высокополимеры требуются довольно специфичные условия и методы полииррпзации. Олефины, действительно дающие такие продукты, составляют сравнительно небольшую группу. С этой точки зрения рассмотрение полимеризации включает два вопроса 1) по какому пути могут протекать реакции полимеризации и 2) какие факторы определяют, способен ли данный мономер к полимеризации, и при каких условиях будет идти этот процесс. [c.115]

    Способность алюмосиликатных комплексов вызывать ноли меризацию надежно доказана для температур от 150 до 350° i Еще до начала применения каталитического крекинга Гэйер получил полипропилены в присутствии алюмосиликатного катализатора при 340° С и при атмосферном давлении [237]. Бутены могут полимеризоваться при температуре выше 210° С, но при давлении 7 ати эта реакция происходит уже при 175° С [257, 268]. При температурах каталитического крекинга термодинамические факторы являются неблагоприятными для полимеризации полимеры, по-видимому, подвергаются изомеризации и насыщению.. [c.333]

    Для установления механизма ионно-координационной полимеризации 1,3-диенов в первую очередь следует ответить на воярое какими факторами обусловлено формирование тех или иных структур полимерной цепи. В настоящее время к рассмотрению этой проблемы подходят с двух основных позиций. [c.111]

    Из органических перекисей широко известна перекись бензоила. Механизм ее разложения весьма сложен и зависит от ряда факторов природы растворителя, наличия примесей и др. Эффек тивность производных перекиси бензоила как инициаторов полимеризации определяется их природой. Нуклеофильные замести-т лй в бензольном кольце увеличивают ее электронную плотиосхь, понижают устойчивость и тем самым повышают скорость полимеризации. Электрофильные заместители приводят к противоположному действию. [c.135]

    В связи с повышением вязкости в процессе полимеризации до конверсии хлоропрена 45—55%, что способствует образованию коагулюма, приводили полимеризацию при более низких концентрациях хлоропрена в эмульсии (30%), при которых увеличение вязкости незначительно, или же вводили в шихту дополнительное количество эмульгатора при достижении указанной конверсии (45%), при которой происходит увеличение вязкости, вызванное уменьшением размеров частиц и увеличением их общего количества. Для предотвращения образования ш-полимера во ВНИИполимер была изучена кинетика его роста, влияние разных факторов и ингибиторов на замедление роста или предотвращение его образования. В результате этих исследований был разработан промышленный процесс проведения полимеризации хлоропрена в эмульсии непрерывным способом с получением стабильных эмульсий и латексов, не содержащих со-полимеров [c.377]

    На основании изучения влияния ряда факторов (мольное отношение u 1 NH4 1, pH среды, концентрация компонентов, состав катализатора и др.) были разработаны оптимальные условия проведения процесса полимеризации ацетилена в сторону преимущественного образования В А с выходом 80% на прореагировавший ацетилен [2, 3]. [c.710]

    Говоря о возможной величине давления, мы хотим только показать, что нри образовании нефти нласты, содержащие органогенный материал, находились под таким давлением, которое являлось достаточным, чтобы вместе с неучитываемым фактором (геологическим временем) компенсировать недостаточную, якобы, судя но лабораторным опытам, температуру и обеспечить процессы и гидрогенизации, и полимеризации углеводородов [ ]. [c.343]

    Это отличие объясняется рядом факторов. Во-первых, дешевле и легче использовать для генерации дихлоркарбена огромный избыток хлороформа и гидроксида натрия. Во-вторых, в отличие от других методов получения ССЬ в МФК-реакции он образуется обратимо и разлагается постепенно. Таким образом, нежелательные побочные реакции (атака на растворитель или исходный реагент, димеризация, полимеризаци) не прояв- [c.290]

    Этот фактор играет важную роль при промышленной полимеризации этилена под низким давлением с использованием катализатора Циглера. Он играет значительную роль также и при эмульсионной полимеризации стирола. Уолл и его коллеги [12], исследовавшие эту реакцию энопериментально, сумели подтвердить сделанные выше теоретические выводы. Они исследовали также различие между реактором периодического действия п реактором смешения применительно к реакции сополиме-ризации. Если в реакторе периодического действия мономеры, имеющие различные скорости реакции, образуют сополимер переменного состава, то в реакторе смешения процесс протекает е постоянной скоростью, в результате чего образуется сополимер однородного состава. [c.117]

    К), при этом отмечена зависимость К от природы растворителя (рис. 21) тангенсы угла наклона линий для разных растворителей одинаковы (—30-I—35 кДж/моль). Уже отмечалось, что по зависимости К=К(Т) можно> определить и AS для гомологов стирола AS = — 105ч—130 Дж/(моль-К). Рис. 22 и 23 иллюстрируют влияние различных факторов на степень полимеризации и согласуются с развитой теорией. [c.271]

    Пример I. Рассмотрим применение однофакторного дисперсионноро анализа для выяснения влияния вида галоидного алкила (фактор А) на процесс радикальной полимеризации. Изучалось влияние на выход полимера у %) пяти раз- [c.84]

    Пример 8 [24]. Исследовался одностадийный процесс получения водорастворимых иолиэлектролитов путем радикальной полимеризации виннлннрндинозых солей без их промежуточного выделения. П )оцесс зависит от бол1>нюго числа количественных и качественных факторов. Необходимо определить оптимальные условия процесса. [c.217]

    Пластичное (вязко-текучее) состояние полимеров. Температура текучести, как и температура стеклования, тоже не представляет собой строго определенной константы для данного полимера, так как и пластичность, и текучесть приобретаются данным полимером по мере повышения температуры довольно постепенно и сильно зависят от харак1ера действующей силы и других факторов. Кроме того, эти свойства сильно зависят также от степени полимеризации и от содержания в полимере других веществ, в частности специально вводимых в него пластификаторов. [c.591]

    В основе технологии синтеза высокомолекулярных соединений лежат полимеризационный и поли-конденсационный методы получения полимеров. Эти методы различаются как по механизму основной реакции, так и по строению образующихся полимеров. Полимеризацией мономеров с непредельными связями или циклами под действием катализаторов, инициаторов или других факторов получают полимеры, звенья которых по элементному составу соответствуют мономеру. Поликондеп-сацией соединений с реакционноспособными функциональными группами получают полимеры,, звенья которых отличаются по составу от исходного мономера. Поэтому выделяют два больших класса синтетических высокомолекулярных соединений — по-лимеризационные и поликонденсационные. Естественно, что и технология их получения различна. [c.4]


Смотреть страницы где упоминается термин Полимеризация фактор: [c.144]    [c.424]    [c.341]    [c.43]    [c.82]    [c.82]    [c.371]   
Аналитическая химия циркония и гафния (1965) -- [ c.29 ]




ПОИСК







© 2025 chem21.info Реклама на сайте