Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и функция антител

    Структура и функции антител [c.211]

    Структура и функция антител. Антитела — класс белков, продуцируемых В-лимфоцитами и осуществляющих первый этап в [c.211]

    Это тотчас же подводит нас ко второй трудности каждое антитело представляет собой глобулин, т. е. белок, и их синтез подчиняется общим законам белкового синтеза, которым мы уделили так много внимания в первой главе. Глобулины антител не отличаются ни по физическим, ни по химическим свойствам от прочих глобулинов, не наделенных функциями антител. Известно, что путь белкового синтеза от источника генетической информации (ДНК) проходит через РНК и рибосомы, а конечная конфигурация (вторичная и третичная структура) полипептидной цепи всецело определяется генетически детерминированной последовательностью аминокислот где же, на каком этапе в таком случае остается для антигена или исходящей от него информации возможность для вмешательства Очевидно, это не первичная (последовательность аминокислот) и не вто- [c.345]


    АНАЛИЗ СТРУКТУРЫ И ФУНКЦИИ АНТИТЕЛ [c.109]

    Получение протеолитических фрагментов для анализа структуры и функции антител [c.109]

    С развитием технологии рекомбинантных ДНК и разработкой способов получения моноклональных антител, а также с установлением структуры и функций иммуноглобулинов появился интерес к использованию специфических антител для лечения различных заболеваний. Работа с генами антител облегчается тем, что отдельные домены молекулы антитела выполняют разные функции. [c.224]

    Несомненно, что и биологические функции, и механические свойства полисахаридов и углеводсодержащих биополимеров в большой мере определяются конформацией макромолекулы и распределением в ней реакционноспособных групп. Все эти факторы зависят, в конечном счете, от первичной структуры полимера. Поэтому понимание факторов, определяющих специфичность биологической функции углеводсодержащих соединений и технические свойства полисахаридов, зависит в первую очередь от развития теоретических представлений о связи между строением, конформацией, реакционной способностью и физико-химическими свойствами полисахаридов и смешанных биополимеров, содержащих олиго- и полисахаридные цепи. Установление этих связей является предпосылкой для осуществления направленного синтеза соответствующих физиологически активных веществ и направленной модификации полисахаридов для получения материалов с заранее заданными свойствами. Поэтому исключительно важной задачей является разработка надежных методов установления первичной структуры полисахаридных цепей, требующих минимальной затраты времени и минимального количества материала. Не менее важны эффективные подходы к точной характеристике конформаций полисахаридной цепи в целом и отдельных ее участков, вплоть до моносахаридных звеньев. Очевидна также необходимость изучения реакционной способности полисахаридной цепи, ее отдельных звеньев и различных функциональных групп, что позволит понять механизм взаимодействия углеводсодержащих биополимеров с их партнерами в биологических системах (например, с антителами при иммунологических реакциях), наметить целесообразный путь модификации природного полимера для придания ему нужных свойств и т. д. [c.625]


    Современный уровень развития биотехнологии обусловлен общим прогрессом науки и техники, особенно — в течение последних 50 лет Достаточно отметить лишь такие события, как установление структуры и функций нуклеиновых кислот, обнаружение ферментов рестрикции ДНК и выявление их значения в жизни клеток с последующим использованием в генно-инженерных работах, создание гибридом и получение моноклональных антител, внедрение ЭВМ и компьютерной техники в биотехнологические процессы и т д [c.9]

    В иммунологии мы сталкиваемся с тремя главными проблемами. Нужно понять, 1) как иммунная система специфически распознает миллионы различных чужеродных молекул и реагирует на них 2) как она отличает эти чужеродные молекулы от своих и 3) как она различает разные группы внедряющихся микроорганизмов и рассчитывает свой ответ таким образом, чтобы эффективно очищать от них организм. Чтобы подойти к выяснению того, как решает иммунная система эти три сложнейшие задачи, мы сначала рассмотрим клеточные основы иммунитета, а затем подробно ознакомимся с функцией и структурой антител, системой комплемента и специфическими особенностями клеточного иммунитета. [c.7]

    Для Б, с. характерна локализация на поверхности клетки. Они выполняют специфич. биологич. функции, связанные с процессами межклеточного взаимодействия. Так, способность бактериофагов поражать одни виды бактерий и не взаимодействовать с другими видами определяется специфич. строением поверхностного антитела бактерий, являющегося липополисахаридом от структуры поверхностных антигенов зависит и патогенность тех пли иных бактерий. Подобные же взаимодействия с участием Б. с. происходят, по-видимому, и при других биологич. процессах, в к-рых клетки узнают друг друга, напр. при оплодотворении, соединении клеток в ткани и клеточной дифференцировке. [c.130]

    БеЛки и пептиды занимают особое место среди биологически важных веществ. Они не имеют себе равных по многообразию и спектру выполняемых ими биологических функций и участвуют, по существу, во всех процессах жизнедеятельности. Среди них мы встречаем ферменты, гормоны, антибиотики, токсины, белки-рецепторы и белки-регуляторы белки образуют строительный материал тканей и органов, лежат в основе защитных систем живого организма (антитела, интерфероны и т. п.), являются ключевыми элементами всех биологических транспортных и энергетических систем. Несмотря на то что многие белки уже хорошо изучены, перед исследователем предстают новые неизведанные просторы мира белков, и в этом отношении надо говорить лишь о нашем вступлении в этот удивительный и загадочный мир. Если вы стремитесь найти новый белок, прослеживая его роль по определенной биологической функции, то сейчас все чаще и чаще вам приходится встречаться с белками новых типов, меняющими наши традиционные представления о свойствах белка и принципах проявления его активности. Это и мембранные белки, существующие и действующие в неполярных средах, и белки рецепторных систем, способные к скачкообразному изменению своей пространственной структуры и, наконец, огромные по размеру белки-ансамбли, с молекулярным весом, достигающим многих сотен тысяч. Все это ставит перед исследователем сложнейшие проблемы, заставляет его постоянно обновлять свой методический арсенал, а колоссальные темпы развития современной науки и стремительный прогресс в изучении живой материи обязывают его находить и идентифицировать эти белки точно и в кратчайшие сроки, отводя не так уж много времени для полного распознания всех уровней структурной организации белка. Это естественно, поскольку настоящее изучение белка, подступ к пониманию его функционирования, начинается лишь тогда, когда структура белка уже расшифрована. [c.3]

    Это отнюдь не новая область. Выпекать хлеб и сбраживать сусло люди научились тысячи лет назад. Процессы ферментации, разделения и очистки давно и хорошо известны. Но с появлением сведений о молекулярной структуре и основных аспектах химии генетического материала в биотехнологии началась новая эра. (см. разд. Ш-Е). Она ознаменовалась разработкой процедур сращивания генов, позволяющих химикам использовать бактерии для производства сложных биологически активных молекул. Были найдены ферменты, способные разрывать цепи ДНК в нужных местах и вводить в них чужеродную ДНК с новыми химическими связями. Модифицированная ДНК вырабатывает белки в соответствии с заложенным в нее измененным кодом. Этими белковыми продуктами могут быть гормоны, антитела или другие нужные нам сложные химические соединения со специфическими свойствами и функциями. Вырабатываемый бактериями с внедренным геном человека интерферон, по-видимому, окажется ценным средством лечения целого ряда болезней. Уже появился на рынке инсулин человека, производимый методом сращивания генов. Активность в этой области высока, и коммерческие предприятия возникают быстро. [c.130]

    Качественные особенности белков, как основы жизненных процессов, без сомнения, определяются химическим строением их молекулы. На современном этапе развития учения о белке центральное место в проблеме занимает вопрос о связи структуры индивидуальных белков с их биологическими функциями. Давно отброшены представления о том, что белки —это инертные коллоидные носители низкомолекулярных активных соединений. Ферменты, многие гормоны, токсины, вирусы, антигены, антитела — вот далеко не полный перечень тех важнейших биологически активных тел, свойства которых связаны с их белковой природой. Детальные представления о роли белков в организме начинают вырисовываться только теперь, когда достигнуты принципиальные успехи в деле расшифровки строения индивидуальных белков. Все возрастающее значение идей и методов химии белка как с естественно-научной и философской, так и с чисто практической точки зрения делает необходимой всестороннюю разработку проблемы белка. Одним из предметов такого исследования должна стать история учения о белке. [c.8]


    Т4-клетки действуют совместно с макрофагами. Сначала макрофаг захватывает несущий антигены организм. Затем он отщепляет часть антигена (какой-то пептид) и выводит его на свою поверхность, как бы предъявляя иммунным клеткам. Т4-лимфоцит с соответствующим по структуре рецептором распознает этот пептид как чужой и в ответ образует большое количество лимфокинов, которые вьшолняют различные функции, и в частности 1) стимулируют размножение Т-клеток 2) инициируют процесс воспаления 3) стимулируют выработку антител В-клетками. [c.177]

    Общие сведения, а также подробные данные об антителах (структура, функции, получение, очистка), об антигенах и реакции между антигенами и антителами можно найти в фундаментальных трудах, таких, как работы Кабата [54], Литмана и Гуда [71], Вейра [115]. [c.89]

    Иммуноглобулинами называют группу сывороточных гликопротеинов, выполняющих функцию антител и продуцируемых в ответ на стимулирующее действие антигенов. В настоящее время известно пять классов иммуноглобулинов 1 0, 1 А, 1дМ, IgD и IgE. Основу структуры всех изученных иммуноглобулинов (в мономерной форме) составляют четыре полипептидные цепи, связанные дисульфидными мостиками. Обнаружены полипептидные цепи двух типов, так называемые легкие и тяжелые, причем каждый мономер содержит по две цепи каждого типа (рис. 26.3.6). Существуют два типа легких цепей — каппа (и) и лямбда (к), общие для всех классов иммуноглобулинов, причем индивидуальные иммуноглобулины в мономерном виде содержат 3 качестве легких цепей либо две х-, либо две > -цепи. Тяжелые цепи специфичны для иммуноглобулинов и определяют их класс. Каждый класс иммуноглобулинов содержит характерное для него количество углеводов, которое может колебаться от 22 моносаха-Ридных остатков в до 82 остатков в мономерном 1 М. Из полимерных форм иммуноглобулинов описаны димерный 1 А и пентамерный 1 М. Макромолекулярный 1 М, как полагают, со- бржит пять мономерных единиц, соединенных в виде кольца, из которого радиально выступают пять клешней . [c.269]

    Если белок содержит ряд структурно сходных повторяющихся доменов, то наблюдается строгое соответствие отдельных экзонов доменам или субдоменам белковой молекулы. Гены, относящиеся к так называемому сверхсемейству генов иммуноглобулинов , содержат разное число экзонов, кодирующих домены полипептидной цепи, каждый из которых включает около ПО а. о. Гомология между отдельными доменами этих белков, выполняющих разные функции в организме, наблюдается на уровне первичной, вторичной и третичной структуры. Гены этого семейства могут содержать один экзон (ген р2-микроглобулина), два или четыре (гены секретируемых антител В-клеток) и, наконец, пять экзонов (ген гликопротеина плазмы человека). р-Кристаллины мыши содержат четыре белковых домена, каждый из которых включает определенный структурный мотив полипептидной цепв , "щ х  [c.192]

    Ковалентная связь между цепями иммуноглобулина необходима для их функции. Иммуноглобулины плазмы прекрасно иллюстрируют многие аспекты корреляций между структурой белка, его функцией и окружением [81]. В иммуноглобулине (рис. 4.2, в) каждый из двух центров присоединения антигена образован поли-пептидными цепями двух типов. Объединение двух идентичных легких цепей и двух идентичных тяжелых цепей существенно для функции молекулы. Неконтролируемый обмен цепей в тысячах различных иммуноглобулинов илазмы крови воспрепятствовал бы эффективному взаимодействию этих антител с антигенами, ко- [c.64]

    Фракция у-глобулинов является наиболее гетерогенной. Известно множество антител, различающихся первичной структурой. Электрофоретиче-ски они открываются главным образом в у-глобулиновой и частично в 3,-глобулиновой фракциях. Структура и функция у-глобулинов более подробно рассмотрены далее (см. главу 2, Гликопротеины ). [c.74]

    Иммуноглобулины. Иммуноглобулины, или антитела, также относятся к классу гликопротеинов, выполняют защитную функцию, обезвреж1[вая поступающие в организм чужеродные вещества —антигены любой химической природы. Синтезируются иммуноглобулины плазматическими клетками, образовавшимися из лимфоцитов. Учение об иммунитете оформилось в самостоятельную науку—иммунологию, изучающую структуру и функц1П1 антител вообще и иммуноглобулинов в частности. Мы представим современные сведения о некоторых физико-химических свойствах и структуре иммуноглобулинов человека (табл. 2.4). Различают 5 классов иммуноглобулинов 1 0, 1 М, 1 А, 1 0 и 1 Е. Детально изучены структура и функция IgG. [c.93]

    Разработка новых методов профилактики и лечения многих заболеваний человека внесла огромный вклад в рост благосостояния людей в XX в. Однако этот процесс никогда нельзя считать завершенным. Так называемые старые заболевания (например, туберкулез) могут дать о себе знать вновь, как только будут ослаблены профи-лактичес1сие меры или появятся резистентные штаммы. Весьма привлекательной выглядит перспектива применения в качестве терапевтических средств специфических антител их можно будет использовать для нейтрализации токсинов, борьбы с бактериями,, вирусами, для лечения раковых заболеваний. Антитело можно уподобить самонаводящейся ракете, которая либо нейтрализует нарушителя - чужеродный агент, либо, если она оснащена боеголовкой , разрушает специфическую клетку-мишень. К сожалению, несмотря на многообещающие возможности, антитела довольно редко применялись для профилактики и лечения болезней и других патологий. И лишь в последнее время, с развитием технологии рекомбинантных ДНК и разработкой методов получения моноклональных антител и с расшифровкой молекулярной структуры и функции иммуноглобулинов, интерес к применению специфических антител для лечения различных заболеваний вновь пробудился. [c.204]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Биологические функции белков исключительно разнооб разны. Некоторые из них обладают свойствами гормонов, ре гулирующих различные процессы обмена веществ (например инсулин поддерживает уровень сахара в крови) другие белкв действуют как катализаторы (ферменты) биологических про цессов, и, наконец, ряд белков является биологическим стро ительным материалом (например, коллаген соединительны тканей и кератин волос). Выше уже были упомянуты свойств гемоглобина млекопитающих как переносчика кислорода Функция некоторых белков крови заключается в обраЕэваниЕ антител, обусловливающих сопротивляемость к заболеваниям а так называемые нуклеопротеиды входят в качестве важной составной части в гены, которые несут наследственную инфор мадию и передают ее в процессе деления клетки. Вирусы, на пример вирус табачной мозаики, состоят из нуклеопротеидов заключенных в белковую оболочку. Структура многих вирусо настолько регулярна, что они могут быть получены в виде хо рошо образованных кристаллов. [c.512]

    Б. с четвертичной структурой привлекают внимание потому, что именно наличие четвертичной структуры обусловливает ряд важных свойств Б., необходимых для выполнения важных биологич. функций. Так, четвертичная структура определяет функции опорных (структурных) белков, напр, коллагена, ферментативную функцию ряда ферментов, иммунные свойства антител (у-глобулинов) и т. д. При нарушении четвертичной структуры утрачиваются соответствующие свойства этих Б. Еще большее общебиологич. значение имеет участие Б. с четвертичной структурой в регуляторных системах живых организмов. Особого внимания в этом отношении заслуживает аллостерич. регуляция. [c.123]

    Особенно поразительно то, что все белки во всех организмах, независимо от их функции или биологической активности, построены из одного и того же ос-новйого набора 20 стандартных аминокислот, каждая из которых, взятая в отдельности, не обладает никакой биологической активностью. Что же тогда придает одному белку ферментативную активность, другому-гормональную, а третьему-свойства антитела Как белки различаются химически Ответ довольно прост белки отличаются друг от друга тем, что кгждый имеет свою, характерную для него одного последовательность аминокислотных звеньев. Аминокислоты-это алфавит белковой структуры соединив их в различном порядке, можно получить почти бесконечное число последовательностей и, значит, почти бесконечное множество разнообразных белков (см. дополнение 6-1). [c.137]

    Белки могут быть разбиты на два больших класса в соответствии с формой их молекул и некоторыми физическими свойствами глобулярные и фибриллярные белки (рис. 6-1). В глобулярных белках одна или большее число полипептидных цепей свернуты в плотную компактную структуру сферической, или глобулярной, формы. Обьлно глобулярные белки растворимы в водных системах и легко диффундируют одни из.этих белков выполняют функции, обусловленные их подвижностью, а другие функционируют как динамические системы. К глобулярным белкам относятся почти все ферменты, равно как и транспортные белки крови, антитела и пищевые белки. Фибриллярные белки представляют собой нерастворимые в воде длинные нитевидные молекулы, полипептидные цепи которых не имеют глобулярной формы, а вытянуты вдоль одной оси. Большинство фибриллярных белков выполняет структурные или защитные функции. Типичными фибриллярными белками являются а-кератин волос и шерсти, фиброин шелка и коллаген сухожилий. [c.140]

    Химические исследования, проведенные в последние 20 лет, показали, что пространственные структуры белков необычайно сложны, а формы их молекул имеют решающее значение для осуществления каждым белком его специфической биологической функции. Полипептидная цепь, состоящая из сотен связанных друг с другом аминокислот, принимает такую пространственную форму (называемую конформацией), которая определяется его аминокислотной последовательностью. Например, молекула коллагена — белка, придающего прочность коже и костям, — имеет форму стержня. Антитела представляют собой молекулы -образной формы с выемками, которые служат для распознавания чужеродных веществ и запуска реакций, обеспечивающих их эффективное обезвреживание. Ценная информация об их архитектуре была получена в рентгеноструктурных исследованиях. Молекулы ферментов имеют щели, называемые активными центрами , в которых связывание реагентов осуществляется таким образом, что становится возможным образование новых химических связей между ними. Таким образом, определенной биологической функции белка соответствует определенная конформация. Основные успехи в исследовании конформации белков были получены с помощью рентгеновских лучей, а также нейтронных и электронных пучков и других методов, которые позволяют нам как бы увидеть белок под увеличением в миллион раз и более. Выяснение конформаций белка показывает, как он выполняет свою биологргаескую функцию. [c.173]

    Структура определяет свойства, а свойства определяют функцию. Поэтому для всех молекул, начиная с простейших, например этилового спирта, и кончая очень сложными по архитектуре и очень изменчивыми молекулами белков, молекулярное строение неразрывно связано с их активностью в качестве лекарственных средств, антител, биокатализаторов, гормонов, агентов-переносчи-ков, поверхностных клеточных рецепторов, элементов скелета или мышечных волокон, которые преврашают химическую энергию в работу. [c.179]


Библиография для Структура и функция антител: [c.271]   
Смотреть страницы где упоминается термин Структура и функция антител: [c.217]    [c.213]    [c.284]    [c.109]    [c.194]    [c.543]    [c.126]    [c.194]    [c.128]    [c.194]    [c.433]    [c.81]   
Смотреть главы в:

Биоорганическая химия -> Структура и функция антител




ПОИСК





Смотрите так же термины и статьи:

Антитела



© 2025 chem21.info Реклама на сайте