Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение физико-химических свойств нефти и ее фракций

    В нефтях действующих скважин определяли содержание фракций, выкипающих до ЗОО С асфальтенов смол силикагелевых парафина и карбоновых кислот. Таким образом, оценивали концентрации компонентов, изменение которых в составе нефти могло в той или иной степени повлиять на величины показателей физико-химических свойств нефти, представленных в табл. 2.17. [c.64]


    Изменения физико-химических свойств фракций ароматических углеводородов происходят независимо от того, из какой нефти они получены. [c.109]

    Рассмотрим особенности технологической схемы вакуумной колонны для разделения мазута на широкую фракцию и гудрон (рис. 1-4, б). Для получения заданного качества целевой фракции колонна имеет три секции и два дополнительных боковых отбора верхняя секция предназначена для выделения легких фракций, присутствие которых обычно нежелательно в основном продукте секция, расположенная ниже отбора основного продукта, обеспечивает качество получаемого продукта по содержанию смолистых и нелетучих соединений. В приведенной технологической схеме показан внешний переток жидкости из концентрационной части в отгонную. В вакуумных колоннах для перегонки мазута, а также в атмосферных колоннах для перегонки нефти подвод тепла в низ колонны ограничен возможностью изменения физико-химических свойств нефтепродуктов, поэтому все необходимое тепло вносится только с сырьем. В связи с этим ограничен также и отвод тепла с орошением, а следовательно, — возможность увеличения флегмового числа колонны. Дополнительный подвод тепла в колонну обеспечил бы дальнейшее увеличение качества получаемых продуктов. Один из возможных вариантов дополнительного подвода тепла в колонну осуществляется следующим образом [9, II] жидкость с нижней тарелки концентрационной части забирается насосом, подается в атмосферную колонну и далее — в печь, а затем уже в виде паров поступает в питательную секцию вакуумной колонны. Такое решение позволяет улучшить качество продуктов не только по фракционному составу, но и по цвету, поскольку продукт с нижней тарелки концентрационной части вакуумной колонны содержит наибольшее количество нелетучих и смолистых соединений. [c.21]

    Для объяснения нелинейных (часто экстремальных) изменений ряда технологических и физико-химических свойств выхода дистиллятных фракций, характеристических температур, кинетической устойчивости, структурно-механических свойств и др. различных нефтяных систем (смесей товарных нефтей различной природы, нефтей и газоконденсатов, нефтяных остатков и т. д.) обычно искали корреляцию со степенью дисперсности частиц. В случаях ее отсутствия иногда ссыл ись, в частности, на несовершенство методов определения размеров частиц дисперсной фазы. Однако основная причина в другом. Мы полагаем, что наряду с изменением степени дисперсности [c.176]


    Однако можно предполагать, что при разделении различных смесей, для которых основная причина избирательного растворения является общей (например, различие в поляризуемости молекул), сравнительная избирательность растворителей с изменением состава исходного сырья будет меняться незначительно. Это можно ожидать при сравнении избирательности растворителей в случае экстракции узких фракций нефти. При расширении пределов кипения фракций картина может несколько изменяться, т. к. в этом случае будет сказываться избирательность по размерам молекул. При узком фракционном составе сырья влияние характера разделяемого сырья на избирательность растворителя во всех случаях можно принять одинаковым и считать, что избирательность растворителя определяется только строением его молекулы. Такое допущение позволяет связать избирательность растворителя с физико-химическими свойствами, зависящими от строения его молекул. [c.253]

    По принятой методике была установлена зависимость между фазовыми изменениями и другими физико-химическими свойствами парафинов, полученных при дробной кристаллизации узких фракций дистиллятного рафината и гача из рафината фракции средней вязкости сернистых нефтей. В качестве примера в табл. 1 и на рис. 2—4 приведены результаты исследования парафинов, выделенных из двух узких фракций и гача. [c.355]

    Испарение - физико-химический процесс, приводящий к массопереносу углеводородов с морской поверхности в атмосферу. Это - наиважнейший исходный атмосферный процесс, в результате которого все летучие фракции (легкие фракции) нефти улетучиваются в течение первых нескольких часов (дней) после разлива нефти. Другая важная роль процесса испарения заключается в изменении физических и химических свойств нефти (в частности, ее плотности, вязкости, содержания воды и т. д.). [c.31]

    Существующие лабораторные методы исследования нефтяных остатков позволяют определять групповой химический состав нефтепродукта. Идентифицировать же индивидуальные углеводороды в нефтяных фракциях очень сложно, а иногда невозможно ввиду их многообразия [2.1]. При разделении и исследовании наиболее тяжелой части нефти возрастает значение физических и физико-химических методов анализа, которые позволяют изучать ее природу и свойства, не вызывая существенных химических изменений в объектах исследования. [c.34]

    Повысить положительный эффект новой техники на рентабельность процессов нефтепереработки можно лишь при осуществлении одного или нескольких из перечисленных ниже мероприятий сокращение занятого на заводе персонала и значительное повышение производительности труда, снижение отпускной цены на основные виды сырья, в новом комплексе технологических процессов предусмотреть производство новых видов товарной продукции, сравнительно малотоннажной, но дефицитной и обладающей уникальными качествами и с высокой отпускной ценой по сравнению с основной многотоннажной продукцией, и, наконец, организация производства товарной продукции, сырьем для которой будут являться дешевые побочные продукты и обременительные отходы производства. С этой точки зрения представляют большой научный интерес, а в будущем и практическую актуальность, поиски реакций и процессов, позволяющих получать вещества, обладающие ценными физико-химическими и техническими свойствами, на основе использования отдельных высокомолекулярных компонентов тяжелых нефтяных остатков (углеводородов, смол и асфальтенов, металлоорганических соединений, порфиринов и др.). Совершенно ясно, что разработкам таких реакций и процессов должны предшествовать довольно нелегкие, трудоемкие и глубокие исследования по аналитическому и препаративному разделению высокомолекулярной части сырых нефтей и нефтяных остатков на их основные компоненты, поиски методов дальнейшей дифференциации этих компонентов на более узкие фракции веществ более близких по своему составу и свойствам и детальному исследованию их реакций, структуры, свойств и зависимости последних от состава и строения, наконец, исследование реакций, позволяющих осуществить взаимные переходы в ряду высокомолекулярных составляющих нефти углеводороды, смолы, асфальтены. Само собою разумеется, что в этих исследованиях должно быть полностью исключено применение методов, которые могли бы вызвать химические изменения в составе и строении этих сложных первичных компонентов нефти. [c.259]

    В последние годы проявляется большой интерес к сераорганическим соединениям, содержащимся в высококипящих дистиллятах. Уже при исследовании их углеводородной части отчетливо прослеживается различие и многообразие химического строения молекул, которое значительно усиливается при переходе к гетероорганическим соединениям. Дистилляты, выкипающие выше 300° С, отличаются как химической, так и физической неоднородностью для них характерно усреднение и сближение элементного состава и свойств составляющих компонентов 24]. В связи с бурным развитием вторичных процессов в нефтепереработке и использованием составляющих нефти в качестве химического сырья, а также с возрастающей потребностью в высококипящих топливах и маслах знание природы и распределения основных функциональных групп ОСС приобретает в настоящее время все больший научный и практический интерес. Одновременно возрастает роль физических и физико-химических методов, которые, не вызывая существенных изменений в структуре молекул, позволяют изучать состав наиболее тяжелых фракций нефти. Оказалось, что для исследования сераорганических соединений высококипящих дистиллятов нефти неприменимо большинство традиционных методов, успешно используемых при изучении состава сераорганических соединений средних нефтяных дистиллятов. [c.11]


    Технологический процесс может быть простым или сложным, т. е. одно- или многостадийным. Технологические процессы переработки нефти многостадийные. Каждая технологическая стадия представляет собой совокупность операций (ряд соответствующих физических, химических, физико-химических процессов), которые обособлены в технологическом отношении и представляют собой самостоятельную законченную часть всего технологического процесса производства полуфабрикатов или готовой продукции. Например, АВТ — стадия первичной переработки нефти с использованием физических процессов получения различных фракций, используемых в дальнейшей переработке на последующих стадиях. Такая стадия переработки, как крекинг термический или каталитический, основывается на деструктивной переработке нефти, происходящей с изменением состава и химических свойств поступающего сырья. [c.85]

    Нагнетаемые в пласт газы могут взаимодействовать как с породой, так и с некоторыми компонентами нефти. В результате этого взаимодействия происходит ряд физико-химических изменений, приводящих не только к увеличению нефтеотдачи, но и к изменению свойств жидкой и газовой фаз нефти. При исследовании изменения физико-химических свойств нефтей и нефтяных фракций под воздействием двуокиси углерода, проведенном в Башкирском государственном университете Л. И. Мирсояповой, было замечено, что растворение в нефти углекислого газа сопровождается десорбцией углеводородов от метана до гексана с высокомолекулярных компонентов нефти. [c.40]

    Однако следует отметить, что изменение физико-химических свойств масляных фракций нефтей Татарии не повторяется в деароматизирован-ных фракциях, значения которых для нефтей различных горизонтов [c.185]

    Tqa o i MKDGib и другие свойства. Чтобы перейти к изучению реакционной способности фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, [c.269]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Основными компонентами нефтей и нефтяных фракций, наиболее склонными к межмолекулярным и коагуляционным контактам при различных внешних условиях, являются, наряду с высокомолекулярными парафинами, полициклоароматические углеводороды, смолисто-асфальтеновые соединения. Взаимодействие этих компонентов приводит к образованию сложных пространственных структур и экстремальному изменению физико-химических свойств нефтяных систем, поэтому выявление и изучение особенностей механизма этих взаимодействий представляют большой практический интерес. В настоящем разделе рассматриваются результаты экспериментов по изучению межмолекулярных взаимодействий в модельных двух- и трехкомпонентных смесях углеводородов различных классов. [c.148]

    В табл. 3.1. приведены физико-химические свойства широкой фракции насыщенных углеводородов. Как следует из данных таблицы, основные изменения качественных параметров фракции облегченной нефти связаны с наличием в ней завышенных концентраций низкокипящих углеводородов, а также присутствием веществ с температурой кипения в пределах 180-238°С, не содержащихся в тяжелой нефти. После предварительной карбамидной депарафинизации состав насыщенных компонентов всех трех нефтей был представлен изопарафиновыми и нафтеновыми структурами. Депарафинизацию проводили с целью исключения возможных ошибок, возникающих при интерпретации данных спектроскопии для нафтеновых и нормальных парафиновых структур [67]. [c.78]

    Закономерность изменения х руппового углеводородного состава узких нефтяных фракций в зависимости от условий перегонкЕ и 11ри-рода сырья может быть полезно использована цри выборе оптимальных условий нагрева нефтяного остатка с обеспечением необходимых требований по коксуемости и физико-химическим свойствам дистиллятных и остаточных продуктов, являющихся сырьем для последующих цроцессов нефтепереработки . Аналогичные наблвдения были полученн щш исследовании нефтепродуктов,отобранных в промышленных рев тифика-ционных колоннах узкие фракции,перераспределенные в смеяных про-дз ктах колонны,имеют также отличные свойства по сравнению с одноименными фракциями, выделенными из сырья. При выполнении же ])ас-четов перегонки и ректификации свойства узких фракций в сырье и продуктах разделения совпадают. Поэтому накопление и обобщение экспериментальных данных по свойствам фракций в различные нефте-цродуктах в дальнейшем позволят разработать метода расчета свойств распределенных фракций в смежных продуктах. [c.66]

    Для исследования изменений, происходящих в физико-химических свойствах нефтяного сырья при ультразвуковом воздействии, проведено изучение структурно-группового состава углеводородов средних фракций нефти (на примере легких гаэоЛЬлей каталитического крекинга ЛШК). Обработку углеводородного сырья ЛГКК проводили в режиме кавитации при частоте 22 кГц длительностью 5 мин. [c.66]

    Для исследования изменений, происходящих в физико-химических свойствах нефтяною сырья при волновом воздейсгвии, автором проведено изучение структурно-группового сосчава углеводородов средних фракций нефти (на примере легких газойлей каталитическою крекинга). Ультразвуковая обработка углеводородного сырья проводилась в режиме кавитации при частоте 22кГ ц и длительрюсти 5 мин. [c.29]

    Это мнение разделяют многие исследователи, изучавшие характер изменения состава и свойств нефтей на территории Днепровско-Донецкой впадины. В пользу такого предположения свидетельствует не только отмеченный многими исследователями дифференцированный и в известной мере независимый характер изменения показателей физико-химических характеристик нефтей, но и диапазон и контрастность этих изменений. Например, содержание асфальтовосмолисш о комплекса ь неф1нх изменяется без какой-либо последовательности от 1 до 48%, углеводородов, выкипающих до 150°С, — от О до 88%. При этом относительно пониженные величины, по наблюдениям Е.Ф. Шевченко и др. [1971] в многопдас-товых месторождениях, отмечаются обьино в нижних горизонтах. Об этом же свидетельствует меньшая (25—45%), по сравнению с фракцией низкокипящих углеводородов, изменчивость выхода фракций от 150 до 300°С. [c.72]

    Следовательно, изменения в характере структурно-группового состава ароматических углеводородов обусловливают закономерные изменения. в их физико-химических свойствах. То же самое было установлено и при исследовании фракций высокомолекулярных ароматических углеводородов, выделенных хроматографически из высококипящих фракций малопарафиновой малосернистой нефти (табл. 40). [c.110]

    Технологическая схема установки обезвреживания вентиляционных выбросов выбирается в зависимости от их фракционного и химического состава, физико-химических свойств газообразных, жидких и твердых примесей, входящих в состав выбросов, степени изменения их количества и состава во времени, возможности утилизации уловленных компонентов и схемы воздушного тракта котлов. В связи с этим применяются следующие схемы установок тип 1 — одноступенчатая схема обезвреживания сравнительно сухих вентиляционных выбросов с их прямой подачей от источников образования в топочное устройство тип 2 — двухступенчатая схема обезвреживания выбросов, содержащих значительное количество высококипящих органических соединений (капель различных смол, минеральных и растительных масел, нефти и продуктов ее переработки и т. п.), с предварительным улавливанием основной массы жидких фракций в гидроловушках барботажного типа и последующим направлением потока загрязненного воздуха в топочное устройство, а уловленных жидких фракций для вторичного использования или уничтожения на специальных полигонах тип 3 — двухступенчатая схема — для увлажненных или запыленных вентиляционных выбросов с предварительным отделением конденсирующихся жидких фракций или твердых частиц в инерционных аппаратах (циклонах НИИОгаз, блок-циклонах или батарейных циклонах ЦКТИ) с последующим направлением очищенного потока в топочное устройство тип 4 — двухступенчатая [c.255]

    Структурно-механическая прочность и агрегативная устойчивость нефтяных дисперсных систем. Одной из основных проблем коллоидной химии нефтей и их фракций является исследование, пространственных структур различного рода в нефтяных дисперсных системах и регулирование разнообразными приемами их механических свойств деформационных и прочностных. Необходимость решения данной проблемы способствовала становлению самостоятельной области коллоидной химии — физико-химической механики нефтяных дисперсных систем. Обобщение значительного эмпирического материала позволило в работе [112] предложить с точки зрения макрореологии (диаграмму изменения структурномеханической прочности с ростом температуры в многокомпонентных нефтяных дисперсных системах (рис. 5). Участок ВГ, имеющий различную ширину в зависимости от строения исследуемой нефтяной системы и вырождающийся в точку для битумов, характеризует ньютоновское поведение в полностью разрушенной структуре, вязкость которой не зависит от скорости сдвига. Точка В отвечает пределу текучести системы. С понижением температуры нефтяная система становится тгересыщенной по отношению к твердым углеводородам, выделение которых из однородного с реологической точки зрения расплава приводит к структурированию системы. На участке БВ взаимодействие формирующихся структурных элементов обуславливает вязкопластическое течение обратимо разрушаемой структуры и наличие предельного напряжения сдвига в точке Б. По мере снижения температуры на этом участке скорость формирования коагуляционных контактов мел ду надмоле- кулярными структурами превышает скорость их разрушения под действием механической нагрузки. В точке Б нефтяная система те- [c.38]

    Природным аналогом вещества поликомпонентного состава, включающим разные группы легких органических соединений, тяжелые углеводороды, сопутствующие природные газы, сероводород и сернистые соединения, высокоминерализованные воды с преобладанием хлоридов кальция и натрия, тяжелые металлы, включая ртуть, никель, ванадий, кобальт, свинец, медь, молибден, мышьяк, уран и др., является нефть [Пиков-ский, 1988]. Особенности действия отдельных фракций нефти и общие закономерности трансформации почв изучены достаточно полно [Солнцева,. 1988]. Наиболее токсичны по санитарно-гигиеническим показателям вещества, входящие в состав легкой фракции. В то же время, вследствие летучести и высокой растворимости их действие обычно не бывает долговременным. На аоверхности почвы эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами, но долго сохраняются в нижних частях почвенного профиля в анаэробной обстановке [Пиковский, 1988]. Токсичность более высокомолекулярных органических соединений выражена значительно слабее, но интенсивность их разрушения значительно ниже. Вредное экологическое влияние смолисто-асфальтеновых компонентов на почвенные экосистемы заключается не в химической токсичности, а в значительном изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты и циклические соединения сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается норовое пространство почв. Эти вещества малодоступны микроорганизмам, процесс их метаболизма идет очень медленно, иногда десятки дет. Подобное действие тяжелой фракции нефти наблюдается на территории Ишимбайского нефтеперерабатывающего завода. Состав органических фракций выбросов других предприятий представлен в подавляющем большинстве легколетучими соединениями. [c.65]

    Сравнивая между собой нафтеновые фракции, выделенные из суммарных НПФ различных масел, следует обратить внимание на то, что по физико-химическим показателям они, так же как и суммарные НПФ моторных масел из бакинских нефтей, мало различаются друг от друга. Вторые парафиновые фракции резко отличаются от нафтеновых по температуре застывания. Таким образом, следует полагать, что изменения, связанные с выделением из суммарных НПФ адкановых углеводородов, сказываются в основном на характеристике их низкотемпературных свойств. [c.146]


Смотреть страницы где упоминается термин Изменение физико-химических свойств нефти и ее фракций: [c.155]    [c.53]    [c.51]    [c.8]   
Смотреть главы в:

Карбамидное комплексообразование нефти -> Изменение физико-химических свойств нефти и ее фракций




ПОИСК





Смотрите так же термины и статьи:

Изменение свойств

Нефть свойства

Нефть фракции

Химические свойства нефти



© 2024 chem21.info Реклама на сайте