Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбционная спектроскопия. Сравнение методов

    Аналогично большинству количественных аналитических методов в методе атомно-абсорбционной спектроскопии предполагается перед измерениями получение градуировочных характеристик, т. е. установление взаимооднозначного соответствия между концентрациями определяемого элемента в стандартных растворах (растворах сравнения) и ценой деления регистрирующего прибора в конкретных условиях опыта. Операцию градуировки (калибровки) измерений проводят всякий раз перед началом работы и после любого перерыва в работе, вызванного гашением пламени, юстировкой лампы и т. д. В качестве растворов сравнения используют в основном синтетические растворы с надежно установленным содержанием определяемого элемента. Поскольку наиболее часто атомно-абсорбционный метод применяют для определения следовых количеств элементов в водных растворах, растворы сравнения (эталоны) также готовят обычно путем растворения металла или его соли в кислоте, разбавляя затем до определенного объема водой или слабым раствором кислоты [2, 4, 170, 309—311, 328, 55, 331] (табл. 3.8). [c.117]


Рис. 33. Ионообменная хроматография хелатных комплексов меди (сравнение результатов обнаружения, проведенного методами УФ-и атомно-абсорбционной спектроскопии) [196]. Рис. 33. <a href="/info/5708">Ионообменная хроматография</a> <a href="/info/801">хелатных комплексов</a> меди (<a href="/info/1059813">сравнение результатов</a> обнаружения, <a href="/info/170014">проведенного методами</a> УФ-и <a href="/info/5509">атомно-абсорбционной</a> спектроскопии) [196].
    Сравнение результатов анализа, проведенного при обнаружении методами атомно-абсорбционной спектроскопии и захвата электронов, показало, что газохроматографическое разделение в сочетании с последним методом отличается большей чувствительностью. [c.164]

    Во многих случаях атомно-абсорбционный метод оказался эффективнее эмиссионного спектрального анализа он обеспечивает большую точность определений (при использовании непламенных атомизаторов относительная ошибка снижена до 0,2—0,3%), низкий предел обнаружения здесь проще стандартизация. Метод пригоден и для определения высоких концентраций. Недостатком по сравнению с эмиссионной спектроскопией является то, что пока нельзя осуществлять многоэлементный анализ — элементы определяют последовательно (правда, есть уже способы определения 4—5 элементов). В основном анализируют растворы, хотя разрабатываются и методы анализа порошковых проб. Атомно-абсорб-ционный анализ растворов хорошо сочетается с методами разделения и концентрирования, особенно с экстракцией. [c.70]

    Электронные спектры поглощения молекул и ионов в УФ и видимой областях используются химиками уже более 100 лет. Классическими являются применения абсорбционной УФ спектроскопии для качественного и количественного анализов. Хотя по сравнению с некоторыми другими спектрами, например ИК, КР или ЯМР, электронные спектры поглощения менее специфичны, УФ спектроскопия в сочетании с этими методами, а также масс-спектрометрией продолжает использоваться для идентификации и определения структуры химических соединений. Этим методом изучаются равновесия и кинетика химических реакций, различного рода комплексы и межмолекулярные взаимодействия и т. д. [c.294]

    В случае некоторых молекул поглощение фотона сопровождается испусканием света с большей длиной волны (т. е. меньшей энергией). Испускание света называется флуоресценцией (или фосфоресценцией, если свечение долгоживущее). Спектры флуоресценции еще в большей степени, чем спектры поглощения, зависят от окружения. Для надежной регистрации параметров флуоресценции требуются меньшие количества вещества. В связи с этим использование флуоресцентной спектроскопии часто дает определенные преимущества по сравнению с измерением поглощения (хотя техника получения абсорбционных спектров более проста). Путем измерения флуоресценции можно получить сведения о конформации, местах связывания, взаимодействиях с растворителем, степени гибкости, межмолекулярных расстояниях и коэффициентах вращательной диффузии макромолекул. К тому же флуоресценцию можно использовать для локализации в живых кл етках тех веществ, которые невозможно обнаружить другими методами. [c.415]


    Еще более интересные выводы сделаны в работе [302] на основании сравнения результатов анализа 70 проб масел с различным содержанием продуктов износа методами искровой эмиссионной спектроскопии с вращающимся электродом и прямой пламенной атомно-абсорбционной спектроскопии. Во всех образцах эмиссионным методом получено примерно в 2 раза больщее содержание металлов. Когда пробы озоляли и анализировали атомно-абсорбционным методом раствор золы в хлороводородной кислоте,. результаты лишь на 10% были больше, чем при прямом анализе. Таким образом, столь значительные расхождения результатов эмиссионного и абсорбционного методов не связаны с размерами частиц износа. [c.207]

    Сравнение методов пламенной и беспламенной атомно-абсорбционной спектроскопии нефтепродуктов проведено в работе С 31 . Показано, что в области концентраций металла 10" -10" % и выше целесообразно применять пламенный метод, в областга 10 -10 % оба метода и для концентраций менее 10 % - беспламенный. Отмечено, что анализ нефтей с предварительным озолением и растворением осадка в водной фазе целесообразно вьшолнять с применением непламенного метода, а прямой анализ выгоднее вьшолнять пламенным методом. [c.6]

    Для определения бората известно несколько экстракционных методов. Показано, что растворимые формы бора в удобрениях экстрагируются 20%-ным раствором 2-этилгексан-1,3-диола в ме-Тилизобутилкетоне. Органическую фазу анализируют методом атомно-абсорбционной спектроскопии. Позднее было изучено 40 потенциальных экстрагентов борной кислоты [14]. Показано, что алифатические 1,3-диолы с шестью и более углеродными атомами являются более эффективными экстрагентами по сравнению с ди-кетонами, гидроксикетонами и другими соединениями. Следует отметить, что ряд металлов, мешающих определению бора, можно отделить экстракцией в виде комплексов с 8-оксихинолином. [c.31]

    Абсорбционная спектроскопия может служить одним из методов качественного анализа. Идентификация какого-либо чистого соединения основана на сравнении спектральных характеристик (максимумов, минимумов и точек перегиба) неизвестного вещества и чистых соединений близкое подобие спектров служит хорощим доказательством химической идентичности, особенно если в спектре определяемого вещества содержится большое число четких, легко идентифицируемых максимумов. Для идентификации особенно полезно исследование поглощения в ИК-области, поскольку многие соединения отличаются тонкой структурой спектров. Применение спектрофотометрии в видимой и УФ-областях в качест-йенном анализе более ограничено, так как полосы поглощения имеют тенденцию к уширению, что скрывает их тонкую структуру. Тем не менее спектральные исследования в этой области часто дают полезную качественную информацию о наличии или отсутствии некоторых функциональных групп в органических соединениях (таких, как карбонил, ароматическое кольцо, нитрогруппа или сопряженная двойная связь). Еще одна важная область применения связана с обнаружением сильно поглощающих примесей в непоглошающей среде если молярный коэффициент поглощения в максимуме поглощения достаточно высок, легко установить наличие следовых количеств загрязнений. [c.143]

    Понятие коэффициент поглощения ввели в аналитическую химию Р. Бунзен и Г. Роско, занимавшиеся фотохимическими исследованиями. Согласно их определению [582], коэффициент поглощения представляет собой величину, обратную толщине слоя, при котором интенсивность света составляет 1/10 первоначального значения. Поглощение пропорционально концентрации. Однако первым использовал эту зависимость в аналитических работах только Фирордт. Й. Бар и Р. Бунзен первыми применили абсорбционную спектроскопию для количественного анализа. Они проецировали спектры раствора сравнения ж исследуемого раствора один под другим и разбавляли исследуемый раствор до тех пор, пока интенсивность его линий не становилась такой же, как у раствора сравнения, после чего можно было рассчитать концентрацию пробы. Однако этот метод оказался довольно трудоемким [583]. Его авторы не смогли оценить, что может дать использование коэффициента поглощения. То, что целесообразнее менять интенсивность света, а не концентрацию, первыми установили Дж. Гови и К. Фирордт. Гови [584] проецировал два источника света на экран и варьировал интенсивность светового потока, меняя расстояние от источника до спектроскопа. [c.213]

    В качестве примера абсорбционной спектроскопии в видимой области спектра с перестраиваемыми лазерами на красителях упомянем измерения линий поглощения NO2 в области 5935 А, проведенные Стевенсом и Заре [108]. Молекулы NO2 возбуждались внутри резонатора узкополосного (ширина полосы 0,035 см- ) перестраиваемого между 5939 и 5941 А импульсного лазера на красителях. Линии поглощения идентифицировали путем заниси спектров флуоресценции с соответствующих верхних уровней. В случае сильного перекрывания спектров спектроскопия возбуждения , т. е. комбинация флуоресцентных и абсорбционных методов измерений, обладает тем преимуществом по сравнению с обычной абсорбционной спектроскопией, что позволяет однозначно идентифицировать линии поглощения с помощью индуцированных лазерным излучением спектров флуоресценции. Эта работа была первым успешным исследованием вращательной структуры в видимом диапазоне крайне сложного спектра NO2. С помощью флуоресцентных измерений было доказано, например, что верхнее состояние имеет симметрию Вг и что равновесная конфигурация этого состояния характеризуется го = 1,31 А и 0о = 111°. [c.270]


    В этой главе представлена другая группа методов, позволяющих исследовать как конформацию макромолекулы или комплекса с участием макромолекулы в растворе, так и взаимодействия макромолекул. Хотя значительную информацию такого рода дает абсорбционная спектроскопия, изучая взаимодействие с веществом поляризованного света, т. е. используя методы дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) (быстрые и применимые к растворам), можно получить еще более ценную информацию (несмотря на то, что теория метода и применяемые приборы более сложны по сравнению с абсорбционной спектроскопией), С помощью этих методов измеряют в зависимости от длины волны способность оптически активного хромофора вращать плоскополяризованпый свет (ДОВ) и по-разному поглощать поляризованный по кругу вправо и влево свет (КД). В основе ДОВ и КД лежат одни и те же физические законы, и фактически оба эти метода представляют собой просто два разных способа изучения одного и того же явления взаимодействия поляризованного света с оптически активными молекулами. Так как оптически активные центры содержатся в большинстве биологических молекул, для изучения последних могут с успехом применяться методы ДОВ и КД. [c.450]

    Мейерсон [73] исследовал смеси 0,1, 1,0 и 10% N0 с аргоном в падающих ударных волнах в интервале 2600—6300 К, хотя только часть этого интервала подходила для изучения скорости диссоциации молекул N0. Для регистрации абсолютной концентрации атомарного кислорода был применен метод атомнорезонансной абсорбционной спектроскопии, кинетическая схема состояла из пяти реакций. Сравнение расчетных и измеренных профилей концентрации атомов О показало, что существенны только две реакции  [c.327]

    Лазеры могут также использоваться для возбуждения в исследованиях комбинационного рассеяния света. Лазерная спектроскопия комбинационного рассеяния (КР) нашла ряд приложений в исследовании промежуточных продуктов фотохимических реакций. Высокая интенсивность и монохроматичность лазерного излучения обеспечивает методу КР чувствительность, которая недоступна с традиционными световыми источниками. Кроме того, появляется возможность изучения промежуточных соединений с временным разрешением. С перестраиваемыми лазерами становится возможной резонансная лазерная спектроскопия (РЛС). Когда длина волны излучения, возбуждающего комбинационное рассеяние, подходит к сильной полосе поглощения исследуемого образца, интенсивность КР увеличивается на шесть порядков по сравнению с обычным, нерезонансным возбуждением. Одним особенно важным вариантом лазерной спектроскопии КР является когерентная антистоксова спектроскопия комбинационного рассеяния (КАСКР), которая зависит от нелинейных свойств системы в присутствии интенсивного излучения и включает смешение нескольких волн. Высокая чувствительность получается вследствие того, что регистрация проводится скорее по люминесцентной, чем по абсорбционной методике. Паразитное рассеяние возбуждающего света ограничивает чувствительность традиционных исследований КР, но в экспериментах по КАСКР вблизи длины волны испускаемого излучения нет возбуждающего излучения, поэтому рассеянное возбуждающее лазерное излучение может быть отфильтровано. [c.197]

    Для непосредственного определения микроэлементов в нефтепродуктах широко применяются методы п. аменной /1-6/ и беспламенной атомно-абсорбционной спсктрофотометрии /7-8/. По сравнению с эмиссионным методом атомной спектроскопии они обладают рядом преимуществ меньше помех, связанных с взаимным влиянием компонентов анализируемого образца и практически отсутствием взаимных наложений резонансных линий, более высокая чувствительность, точность и окспрес-сность анализа. [c.67]

    В последнее время спектроскопия в инфракрасной области начинает занимать все большее место в вопросах, связанных с изучением состава нефтяных фракций и их компонентов, в особенности высококипящих (керосины, масла и т. д.), где метод анализа при помощи спектров комбинационного рассеяния, хорошо зарекомендовавший себя при изучении бензино-лигро-нновых фракций [4], оказывается более затрудненным в результате флюоресценции, возникающей в этих высококипящих фракциях. Инфракрасная спектроскопия обладает еще тем преимуществом, что в этой области спек1-ры могут быть получены для вещества, находящегося в любом агрегатном состоянии, и требуют на анализ ничтожных количеств продукта, тогда как для второго метода удовлетворительная методика разработана только для жидкостей и при этом требуются значительные количества веществ, что связано с меньшей чувствительностью анализа по спектрам комбинационного рассеяния по сравнению с абсорбционным методом. [c.416]

    Благодаря импульсной спектроскопии можно непосредственно обнаруживать появляющиеся при фотохимических реакциях ко-роткоживущие частицы в возбужденном (например, триплетном) или основном состоянии (например, радикалы, ионы), если они отличаются по спектру от исходных систем [11, 12]. По существу, при этом используются методы абсорбционной или эмиссионной спектроскопии с тем, однако, отличием, что при облучении интенсивной вспышкой образуются значительно более высокие концентрации возбужденных молекул. Благодаря этому, например, могут быть зарегистрированы триплетные состояния в растворах даже при нормальных температурах. Важным условием для применения импульсного метода является небольшая продолжительность вспышки по сравнению с временем жизни обнаруживаемых частиц. Поэтому для генерации светового импульса применяют а) фо-тоимпульсные лампы с продолжительностью импульса 10 с — для наблюдения триплетных состояний б) лазеры с длительностью импульса 10 —10 с, которая позволяет исследовать интервалы времени, типичные для синглетных возбужденных состояний (10- с) в) лазеры с очень короткими импульсами порядка 10 —10 2 с (например, неодимовый лазер), с помощью которых можно исследовать механизм безызлучательной релаксации и т. п. [c.99]

    Лазерная абсорбционная спектрометрия позволяет измерять очень низкие значения оптических плотностей (вплоть до Л = = Ы0- —5-10- ) с воспроизводимостью значений Л = 2-10- . Разработан способ определения этим методом следов железа (с помощью ферроцианина — е = 28 600, % = 584 нм) в особочистом SI I4 в интервале концентраций (0,5—3,0)-10- г/мл. Фото-акустичеекая спектроскопия дала возможность снизить предел обнаружения следов кадмия [101] на 2 порядка по сравнению с методами обычной спектрофотометрии. [c.74]

    Определение хлора в смолах является одним из примеров промыщленно важных анализов легких элементов. Такое же определение можно успешно осуществить и при использовании абсорбционных методов анализа в полихроматическом (см. 3.8) или монохроматическом (см. 5.3) излучениях. Однако рентгеновская эмиссионная спектроскопия является лучшим методом такого анализа до тех пор, пока состав наполнителя (весь образец, кроме хлора) меняется незначительно, или когда для сравнения с образцом можно применить подходящий стандарт. [c.237]


Смотреть страницы где упоминается термин Абсорбционная спектроскопия. Сравнение методов: [c.88]    [c.216]    [c.198]    [c.11]   
Смотреть главы в:

Инструментальные методы химического анализа -> Абсорбционная спектроскопия. Сравнение методов

Инструментальные методы химического анализа -> Абсорбционная спектроскопия. Сравнение методов

Инструментальные методы химического анализа -> Абсорбционная спектроскопия. Сравнение методов




ПОИСК





Смотрите так же термины и статьи:

Абсорбционная спектроскопия

Абсорбционный метод

Метод сравнения

Сравнение ИК-спектроскопии и спектроскопии КР



© 2024 chem21.info Реклама на сайте