Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутен гидрирование

Рис. 8-2. Теплоты гидрирования цис- и транс-2-бутенов. Рис. 8-2. <a href="/info/38275">Теплоты гидрирования</a> цис- и транс-2-бутенов.

Рис. 74. Схема процесса производства изооктана из бутанов (дегидрирование бутанов, полимеризация бутенов и гидрирование полимеризата). Рис. 74. <a href="/info/471271">Схема процесса производства</a> изооктана из бутанов (<a href="/info/11213">дегидрирование бутанов</a>, <a href="/info/316814">полимеризация бутенов</a> и гидрирование полимеризата).
    Очистка изопрена от сг-алкинов достигается каталитическим гидрированием. По конверсии при гидрировании с никелевым катализатором на кизельгуре алкины располагаются в ряд 1-пен-тин > 2-метил-1-бутен-З-ин > 3-метил-1-бутин > 3,3-диметил-1-бу-тин > 2-бутин > 2-пентин. [c.179]

    Скорость гидрирования низших алкенов в присутствии никеля снижается в следующем ряду этилен > пропилен > бутен-2 > изобутилен. Вообще она уменьшается с увеличением количества и степени разветвления алкильных заместителей  [c.240]

    При обычном электрохимическом механизме, как правило, восстанавливаются частицы, адсорбированные на электроде и потерявшие часть степеней свободы, которыми они обладали в растворе. В связи с этим здесь существенную роль могут играть стерические факторы. При восстановлении сольватированными электронами восстанавливаемые частицы находятся в объеме раствора и стерические затруднения проявляются в меньшей мере. Найдено, например, что 2,3-де-метил-2-бутен, в котором двойная связь экранирована метильными группами, создающими стерические затруднения, восстанавливается сольватированными электронами в смеси гексаметилфосфотриамида и этанола почти столь же легко, как и циклические олефины. Отмечено также, что при восстановлении сольватированными электронами стереохимия продуктов восстановления иная, чем при электрокаталитическом гидрировании. [c.445]

    Одним из первых применений недеструктивных процессов было производство устойчивых к смолообразованию высокооктановых авиационных бензинов. Гидрированию подвергались диизобутилен и соответствующие содимеры, полученные при полимеризации бутенов [198]. Полимеризация проводилась при воздействии сначала холодной или горячей серной кислотой, а затем крепкой фосфорной кислотой. Фосфорная кислота высушивалась на кизельгуре и т. д. Гидрирование происходило при мягких условиях с легко отравляющимися серой никелевыми катализаторами или, ири более высоких температуре и давлении, — с более стойкими к сере катализаторами. Продуктами гидрирования были высоко-разветвленные октаны, очень близкие к изооктану. [c.94]


    Значение переноса водорода было также доказано пропусканием смесей изобутенов и н-бутенов, разбавленных молекулярным водородом, над соответствующим катализатором гидрирования [c.332]

    Данные, приведенные выше, позволили сделать вывод о зависимости между энергиями связей и структурами соединений. Теплота гидрирования алкенов с двойной связью на конце молекулы (бутен-1) больше, чем алкенов с двойной связью, расположенной ближе к середине цепи (бутен-2). [c.236]

    Уравнение 2 дает возможность предположить, что бутен десорбируется с места своего образования, а затем адсорбируется и гидри=-руется на другом центре. Если данные, полученные в работе обрабатывать по уравнению, учитывающему образование бутана как за счет десульфуризации, так и за счет гидрирования бутена на од-аом центре, то оно не выполняется. Полагают что участки поверх-аости, занятые тиофеном, относительно неэффективны для гидрирования бутенов. [c.287]

    Эти скорости зависят также от природы катализатора. Например, они заметно различаются в присутствии платинового или палладиевого катализаторов. Соотношение между скоростями, установленное для чистых углеводородов, не сохраняется прп гидрировании их смесей. Поэтому, несмотря на то, что скорости гидрирования чистого бутадиена в бутен и чистого бутена в бутан практически являются теми же, в смеси этих соединений гидрирование бутадиена (с образованием бутена) протекает намного быстрее. Возможно, это объясняется большей величиной коэффициента хемосорбции бутадиена. [c.240]

    При удалении примеси ацетилена из этилена тепловой эффект гидрирования обычно не велик и тепло поглощается большим объемом проходящих через реактор газов, как и в случае гидрогенизационной очистки бутенов от примеси бутадиена. [c.107]

    Возможность применения гомогенных катализаторов в гидроочистке пока показана только на примере жидкофазного гидрирования пропилена и бутенов, а также более тяжелых олигомеров пропилена — гептенов и др. В исходных фракциях Сз и С4 может содержаться до 60% диеновых и ацетиленовых углеводородов. В полученном же продукте содержание олефинов не превышает 2%, ацетилена — 5-10 %- [c.229]

    Диены, присутствующие в исходном продукте, образуются в результате глубокого дегидрирования к-парафипов при пх превращении в моноолефины. Один из исходных продуктов в производстве изооктапа, к-бутеп, получается в виде смеси бутена-1 и бутеиа-2 при каталитическом дегидрировании к-бутана после отделения водорода их вместе с ненрореагировавшим бутаном вводят п реакцию алкилирования. В зависимости от условий дегидрирования к-бутен содержит больше или меньше бутадиена, поскольку наряду с дегидрированием к-бутана в бутены нроисходит в незначительной степени дальнейшее дегидрирование к-бутенов в бутадиен. Чтобы бутадиен не попадал в аппарат для алкилирования, его можно предварительно селективно поглотить из углеводородной смеси отработанной серной кислотой. Однако такой способ удалепия бутадиена всегда сопровождается потерями цепного моноолефина, так как последний частично сонолимеризуется с бутадиеном и в таком виде удерживается серной кислотой. В последнее время бутан-бутиленовые смеси очищают от бутадиена неполным гидрированием последнего в бутен. [c.324]

    С учетом значений величин гидрирования (в ккал/моль) этилен—32,8 пропилен — 30,1 бутен-1 —30,3 цис-бутен-2 — 28,6 транс-бутен-2 — 27,6 изобутилен — 28,4 тетраметилэтилен — 26,6 — расположите эти соединения в ряд сравнительной устойчивости и объясните этот ряд. Сравните и объясните сравнительную устойчивость цис- и траяс-изомеров. [c.185]

    Двустадийный процесс избирательной полимеризации бутенов и гидрирования диизобутенов осуществляется обычно при наличии значительных количеств бутан-бутеновой фракции этот способ производства использует бутены в меньшей мере, чем алкилирование изобутана бутенами, где все количество бутенов и равное ему количество изобутана вступают в реакцию. [c.427]

    Показатели для сочетания процессов дегидрирования и избирательного гидрирования при получении максимального выхода бутенов [c.290]

    В табл. 1.30 и 1.31 суммированы литературные данные по гидрированию бутадиена-1,3 и пентадиена-1,3 на металлических, оксидных и металлокомплексных катализаторах. При обсуждении этих данных следует учитывать, что соотношение продуктов при гидрировании диенового углеводорода зависит не только от типа применяемого катализатора, но и от условий проведения реакции (температуры, природы растворителя, если реакция осуществляется в жидкой фазе). Условия приготовления катализатора также сказываются иногда на соотношении продуктов реакции. Так, При гидрировании бутадигна-1.3 на Со-катализаторе, восстановленном при температурах ниже 300°С, отношение бутен-1/бутен-2 составляет 2,33. В то же время на данном катализаторе, восстановленном при температурах выше 400°С, это отношение равно 0,51. В случае металлических катализаторов кислотные свойства носителя также влияют на состав образующихся Продуктов реакцни [107]. Несмотря на это для выявления характерных закономерностей, присущих тому или иному типу катализаторов, мы будем пренебрегать влиянием некоторых факторов на соотношение продуктов реакции. [c.65]


    Как видно иэ представленных в табл. 1.30 данных, при гидрировании бутадиена-1,3 на большинстве металлов отношение бутен-1/бутен-2 составляет 1,13 0,43. Исключением является медь, для которой это соотношение равно 5,0, т.е. на этом катализаторе происходит в основном 1,2-присоединение водорода к молекуле бута диена-1,3. [c.65]

    При полимеризации бутена и изобутена в смесь изооктенов ( кодимер — т. е. диизобутилен) применялась в качестве катализатора горячая серная кислота или твердая фосфорная кислота. Последняя представляла собой прокаленное соединение фосфорной кислоты и кизельгура. После гидрирования кодимера получали гпдрокодимер , т. е. смесь изооктанов. Гидрокоди-мер в то время являлся ценной составной частью бензина для военной авиации. Сейчас ни кодимер ни гидрокодимер пе производятся. Позднее па установки полимеризации стали направлять в качестве сырья смеси пропенов и бутенов. [c.57]

    В горячем кислотном процессе применяется какая-либо сильная кислота, но абсорбция проводится при температуре, примерно соответствующей температуре второй ступени в холодном процессе. Абсорбция и полимеризация заканчиваются в одну ступень. Одновременно имеет место сополимеризации между нормальными бутенами и изобутиленами 3,4,4-, 2,3,3- и 2,3,4-триметил-пентены обнаружены наряду с двумя диизобутиленовыми изомерами [394]. Октановое число около 86 и при гидрировании достигает 97. [c.115]

    Представляет интерес исследовать изомеризацию олефинов в атмосфере водорода, в связи с тем что эта реакция может быть промежуточной как при гидрировании олефинов, так и при изомеризации парафинов. Показано [39], что изомеризация бутена-1 в присутствии Нг и без него приводит к разным составам получаемых бутенов-2. Палладйрованная окись алюминия более активна при изомеризации бутена-1 в присутствии водорода. Степень конверсии бутена-1 в бутены-2 в этом случае при 200 °С составляет 56,8%, а в отсутствие Нг она меньше 1%. Кроме того, установлено, что в присутствии Нг реакции изомеризации протекают уже при комнатной температуре, а без Нг —только после 150°С. Но при высоких температурах этот катализатор активен и без водорода. [c.157]

    Было показано что предварительная адсорбция сероводорода на катализаторе тормозит превращение тиофена и особенно сильно — гидрирование бутенов. Однако обработка сероводородом не влияет на цис-транс-шоже т тщю, миграцию двойной связи и гидрирование бутадиена. При изучении зависимости активности катализаторов от времени их работы было найдено что активность непрерывно уменьшается вследствие отравления сероводородом. Алюмо— кобальтмолибденовый катализатор отравляется также тиофеном, метилтиофеном, пиридином и аммиаком Реакция гидрирования тормозилась этими добавками, а гидрогенолиз тиофена — аммиаком. [c.287]

    Однако указанное условие является необходимым, но недостаточным дпя доказательства протекания реакции изомеризации олефинов при гидрировании диеновых углеводородов. В зтой связи рассмотрим влияние температуры реакции на состав продуктов. При гидрировании бутадиена-1,3 на Р(1-катализаторе при температуре 21°С отношения бутен-1/бутен-2 и цис-бу1еи-21транс-бутен-2 составляют 1,5 и 0,075 соответственно [103], т.е. они близки к равновероятным значениям. При температуре 215°С эти величины равны 0.88 и 0.32 [105], т.е. они приблизились к равновесным значениям, по-видимому, в результате изомеризации. Иной результат получен в случае Рг-катализатора отношения бутен-1/бутен-2 и цис-бутеи-21 транс-бутен-2 при 15°С составили 1,85 и 0,94 соответственно [103], а [c.67]

    Процесс имеет две модификации — изопол и гидропол. Отличительной особенностью этих модификаций является заключительная стадия гидроизомеризации бутена-1 в бутен-2 с целью улучшения качества сырья установки алкилирования (изопол) или гидрирование всех продуктов, в том числе и бутиленов, перед направлением последних на пиролиз. Ниже охарактеризованы выход и качество продуктов  [c.175]

    Гидрирование ацетиленового спирта в диметилвинилкарбинол осуществляется на суспендированном в воде катализаторе, представляющем собой коллоидальный палладий, осажденный на носитель, с добавкой модификатора. Реакция протекает в системе из двух реакторов 6 (на рисунке показан один) при 30—80°Си давлении 0,5 — 1,0 МПа. Гидрирование происходит с выходом, близким к теоретически возможному. Продукты реакции проходят газосепаратор 7. Непрореагировавщий водород возвращается на гидрирование. Водная суспензия катализатора отделяется от органических продуктов с помощью центрифуги 8 и также возвращается в реактор 7. Сырой 2-метил-3-бутен-2-ол испаряется в теплообменнике 9 и поступает в реактор дегидратации 10. Превращение изоамиленового спирта в изопрен осуществляется в стационарном слое высокочистой окиси алюминия при атмосферном давлении и 250—300 °С. Цикл контактирования длится более 100 ч, после чего катализатор подвергается окислительной регенерации. Степень превращения изоамиленового спирта достигает 97%. Контактный газ конденсируется и подвергается водной отмывке в промывной колонне 11, в сочетании с отпарной колонной 12. Отмытый изоамиленовый спирт возвращается на контактирование Изопрен-сырец направляется на систему колонн экстрактивной ректификации Ы и 14, пройдя которые мономер достигает степени чистоты 99,9%. [c.382]

    Горячая кислота поглощает также значительную часть к-бутеиов. (Зднако последпие и суп1,ествующих условиях полимеризуются не так быстро и ] основном вступают в смешанную полимеризацию с изобутиленом. Это представляет определенное преимущество. Тогда как из продуктов гомополимеризации / -бутенов после гидрирования образуются углеводороды с низким октановым числом, изооктаны, полученные смешанной полимеризацией, обладают высокой детонационной устойчивостью. [c.299]

    При обсуждении закономерностей гидрирования диеновых углеводородов на катализаторах различной природы прежде всего рассмотрим соотношение образующихся продуктов реакции (изомерных олефинов), так как это соотношение, по-видимому, зависит от типа катализатора и соответственно от природы промежуточных комплексов реакции. Из диеновых углеводородов наиболее подробно исследовались реакции гидрирования бутадиена-1,3 и пентадиенов-1,3. Представляется целесообразным рассмотреть отдельно закономерности гидрирования этих углеводородов, поскольку соотношение продуктов реакции зависит от типа исходного углеводорода. В этом легко убедиться из следующих соображений. Если предположить равновероятное присоединение атомов водорода по всем возможным положениям молекулы диенового углеводорода (1,2- и 1,4-присоедине-ния), то, например, отношение бутен-1/бутен-2 при гидрировании бутадиена-1,3 будет равно 2,0. В то же время отношение пентен-1/пентен-2 при гидрировании пентадиента-1,3 будет составлять всего 0,5. [c.65]

    Результаты селективного гидрировании бутадиена в бутен (катал изато р—сул ьф 11 д ни ке ля на окиси алюминия) [c.325]

    НТС 200 (ОХ) Ni / AI2O3 Экструдаты с трехлепестковым сечением Гидрирование пиролизного бензина селективное гидрирование бутадиена в бутен догидрирование сырья установок алкилирования и изомеризации [c.32]

    Перечисленные сопутствующие процессы действительно имеют место в полном соответствии с предложенными схемами. Так, во время восстановления 1,2-диметилциклопентена на оксиде платины из реакционной смеси может быть выделен его 2,3-диметилизомер, а при восстановлении пентена-1 на скелетном никеле - цис- и т/ <з//с-пентены-2. В зависимости от применяемого катализатора, температуры и давления водорода изомеризация алкенов протекает или быстрее, или медленнее, чем гидрирование. На никеле, являющемся активным катализатором изомеризации, при температуре 60-130 °С миграция двойной связи в бутене-1 происходит в 2 раза быстрее гидрирования, а г ис-тр<зА/с-изомеризация бутена-2 - гораздо быстрее миграции двойной связи. Наоборот, на платиновом катализаторе при температуре 20 °С и атмосферном давлении гидрирование гексена происходит в 30 раз быстрее миграции двойной связи. Обмен атома водорода алкена на атом водорода с поверхности катализатора обнаруживается при гидрировании соединений, меченных дейтерием, или при каталитическом восстановлении дейтерием. Наиболее высока скорость такого обмена в аллильных положениях. [c.28]

    Обобщая результаты исследования реакции гидрирования бутадиена-1,3 на металлических катализаторах, можно сказать, что отношение бутен-1/бу-тен-2 на них в среднем несколько ниже равновероятной величины, а отношение цис-Ьу1йК-21транс-Ьу1ел- в среднем выше равновероятной величины. Если же быть более точным, то можно отметить, что по соотношению ЧИС-бутен-2/77)акс-бутен-2 среди металлов выделяются две группы на одних металлах (Со, Pd) это отношение соответствует равновероятной величине, на других (Ni, Ru, Rh, Os, Ir, Pt) оно превышает равновероятное значение. Причина подобных различий может быть связана с различной устойчивостью син- и акги-конформеров бутадиена-1,3 и jr-аллильных промежуточных комплексов на этих катализаторах. Резко выделяется из этих закономерностей Си-катализатор, на котором с высокой селективностью образуется бутен-1 [104], т.е. преимущественно происходит 1,2-присоединение водорода к молекуле бутадиена-13. [c.68]

    С ди оксидных катализаторов можно выделить две группы на которых состав продуктов гидрирования бутадиена-1,3 существенно различается (см. табл. 1.30). На оксидах одних металлов (Zr, Th, La, Со) отношение бутен-1/бутен-2 составляет 0.14 0,07. В ту же группу попадает и оксид магния. Это соотношение существенно ниже равновероятного и находится на уровне равновесного. Однако отношение цис-6у7ен-Цтранс-бутен-2 на указанной группе оксидов металлов (кроме MgO) равно 0,13 0,07, что соответствует равновероятному присоединению водорода. [c.68]


Смотреть страницы где упоминается термин Бутен гидрирование: [c.255]    [c.107]    [c.36]    [c.23]    [c.308]    [c.309]    [c.310]    [c.325]    [c.325]    [c.279]    [c.71]    [c.86]    [c.390]    [c.390]    [c.507]    [c.337]    [c.47]   
Органическая химия (1974) -- [ c.146 ]

Инфракрасные спектры адсорбированных молекул (1969) -- [ c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Бутен

Бутен L Бутен

Бутенил



© 2024 chem21.info Реклама на сайте