Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксиды металлов IV и V групп

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]


    Таким же путем возможна замена ацильных групп сложного ира (ацидолиз). Процесс заключается во взаимодействии сложного эфира и карбоновой кислоты в присутствии серной кислоты, оксида металла или сульфата ртути при 150°С. [c.243]

    Теплоты образования оксидов металлов группы УВ [c.93]

    При образовании оксидов металлов группы VIB выделяется значительное количество энергии (табл. 21). [c.104]

    Катод оксиды металлов групп I и V Оксиды щелочных металлов Полупроводник на металле Зерна AgX на эмульсии [c.176]

    Если базироваться на термодинамическом принципе подбора активных катализаторов для окислительных процессов, то наиболее активными должны быть оксиды группы а . В действительности наивысшей активностью обладают оксиды металлов группы б и особенно УгОб. Следовательно, значение 5р не является единственным критерием каталитической активности. [c.59]

    Реализованы также проц ссы СВС в системах, где оба реагента— оксиды. Например пероксид металла группы 1 +низший оксид металла группы II- -двойной оксид. [c.42]

    В последние годы интенсивно изучаются процессы превращения толуола и ряда других углеводородов на Rh-катализаторах в присутствии водяного пара [269—272]. Известно, что добавки Pt и других благородных металлов повышают активность и селективность Rh-катализаторов деалкилирования толуола. Для уменьшения расхода благородных металлов изучено [269] промотирующее влияние на выход целевого бензола оксидов Ni, Со, Fe, U, Th, Се, Сг, Мо, W. Показано, что сами по себе указанные оксиды в количестве 1 — 2% (масс.) не обладают деалкилирующей активностью. Наилучшими промоторами являются РегОз и UO3. Зависимость конверсии толуола и селективности образования бензола от мольного отношения Н2О толуол представлена на рис. 37. Эти результаты хорошо согласуются с данными, полученными А. А. Баландиным и сотр. [262] при исследовании деалкилирования толуола водяным паром на Ni-катализаторе. На основании полученных результатов обе группы авторов считают, что при деалкилировании толуола с помощью водяного пара активация углеводорода происходит на активных центрах металла (Ni или Rh), активация молекул воды—на поверхности оксида алюминия и оксидов металлов, образование СО и СО2 — на границе раздела между указанными центрами. [c.176]

    Было изучено влияние активного компонента - оксида металла IV группы периодической системы — на скорость образования свободных радикалов при окислении спиртов [c.15]


    Например, еще в 1794 г. финский химик Юхан Гадолин (1760— 1852) предположил, что в минерале, полученном из Иттербийского-карьера, расположенного вблизи Стокгольма, содержится новый оксид металла (или земля). Поскольку эта новая земля значительна отличалась от уже известных земель, например кремнезема, извести и магнезии, то ее отнесли к редким землям. Гадолин назвал открытый им оксид иттрия по названию карьера спустя 50 лет из этога оксида был выделен в относительно чистом виде новый элемент — иттрий. Примерно в середине XIX столетия химики начали интенсивно изучать состав редкоземельных минералов. Проведенные исследования показали, что эти минералы содержат целую группу новых элементов — редкоземельных элементов. Шведский химик. Карл Густав Мосандер (1797—1858) открыл, например, в конце 30-х — начале 40-х годов XIX в. четыре редкоземельных элемента лантан, эрбий, тербий и дидим. На самом деле их было пять поскольку спустя сорок лет в 1885 г. австрийский химик Карл Ауэр фон Вельсбах (1858—1929) обнаружил, что дидим представляет собой смесь двух элементов, которые он назвал празеодимом и неодимом. Лекок де Буабодран также открыл два редкоземельных элемента самарий в 1879 г, и диспрозий в 1886 г. Сразу два редкоземельных элемента — гольмий и тулий описал в 1879 г, П. Т, Клеве, а в 1907 г. французский химик Жорж Урбэн (1872—1938) сообщил о новом четырнадцатом редкоземельном элементе — лютеции (Лютеция — древнее название Парижа). [c.104]

    Активный металлический катализатор на подложке из оксида металла. Тонкий слой металла платиновой группы наносят на подложку — обожженный а-оксид алюминия либо фарфор (свечного типа). Подложку изготавливают в виде цилиндрических гранул, расположенных рядами, смещенными по отношению друг к другу. [c.188]

    Гетерогенные процессы, проходящие на поверхности раздела кристалл — газ, чрезвычайно многообразны такие реакции щи-роко используются в химической технологии. Из множества этих реакций ниже рассмотрены четыре группы процессов горение твердого топлива, восстановление оксидов металлов, процессы, лежащие в основе газовой коррозии, и гетерогенный катализ. [c.230]

    Другую группу практически важных гетерогенных процессов, протекающих на границе раздела кристалл — газ, составляют реакции восстановления оксидов металлов. [c.232]

    По отношению к нагреванию сульфаты можно подразделить на две группы. Одни из них (соли К, 1Ма, Ва) не разлагаются даже при 1000 " С, другие (соли Си, А1, Ре) распадаются на оксид металла и ЗОб- при гораздо более низких температурах. [c.331]

    В качестве топлива для этих элементов применяют водород, спирты, альдегиды и другие активные органические вещества. При высоких температурах можно использовать оксид углерода (П), углеводороды, нефтепродукты и др. В топливном элементе электродвижущая сила образуется за счет реакции соединения кислорода (или воздуха) с веществами, способными более или менее легко окисляться. Материалом для изготовления электродов в топливных элементах могут служить металлы переходных групп (например, никель или металлы группы платины), а также угли с сильно развитой поверхностью, на которую наносят соответствующие катализаторы (оксиды некоторых металлов и др.). [c.221]

    В отличие от металлов группы УВ способность пассивироваться снижается с повышением порядкового номера. Фактически один только хром сохраняет пассивность в широком интервале температур за счет образования устойчивой оксидной пленки. Молибден и вольфрам не пассивируются, особенно в области высоких температур, так как оксиды их летучи при температурах ниже температуры плавления самих металлов. Эти свойства молибдена и вольфрама требуют особых мер защиты деталей и конструкций из этих металлов при высоких температурах. [c.102]

    Как изменяется кислотно-основный характер оксидов металлов 1ИА-группы при увеличении их атомной массы  [c.312]

    Н1 (иодистоводородная кислота) Гидроксиды и оксиды металлов группы HNO3 (азотная кислота) 2А (за исключением Ве) [c.80]

    Методом поверхностных электромагнитных волн (ПЭВ) в ИК-области было изучено [1,38, 1,39] взаимодействие углеводородов с поверхностью ряда оксидов металлов (СаО, ВаО, РЬО и AI2O3)- При 300-400 С в области 900-1100 см появились интенсивные полосы поверхностных групп ОН и ОСН3. Предполагается, что это промежуточные соединения [c.16]

    В процессе таторей (фирма Тоуо) используется катализатор Т-81 на основе Н-морденита, содержащий оксиды металлов IV группы. Первая промышленная установка диспропорционирования и трансалкилирования с производительностью по переработке 77 тыс. т толуола в год введена в действие в октябре 1969 г. в Кавасаки (Япония) компанией Тогау. [c.282]

    Крекинг нафты осуществляют в трубчатых реакторах, описанных выше, и в реакторе с кипящим слоем (рис. 3). Для реактора с кипящим слоем закономерен вопрос о том, является ли кипящее твердое вещество катализатором или выполняет только функции теплоносителя Это спорный вопрос, и мы его здесь обсуждать не будем. Углистые вещества, которые откладываются на твердом теплоносителе, удаляют обычной регенерацией. Роль твердого теплоносителя могут выполнять иесок, оксид алюминия, муллит, раздробленный и просеянный огнеупорный материал различного состава или встречающийся в природе зернистый материал, такой, как циркониевый песок,, рутил или даже шлак. Благодаря специфическим свойствам любого из названных материалов его использование может стать заманчивым или даже полезным. Следует тщательно избегать металлов группы железа, которые могут вызывать повышенное образование углистых веществ. [c.147]


    Эта реакция проводится в паровой фазе в трубчатом реакторе при неожиданно низких температурах (200— 300°С). Большое количество тепла, выделяющегося в ходе реакции, может быть отведено потоком азота или другого инертного газа, циркулирующего в реакторе. Если циркуляцию газа удается осуществлять достаточно экономично, то в этих целях может быть использован даже избыток этилена. Если теплоносителем явля ется этилен, то исчезает необходимость использования трубчатого реактора вполне подходит полочный реактор с несколькими слоями катализатора, показанный на рис, 8. Катализаторами обычно служат благородные металлы, нанесенные на оксиды кремния или алюминия и в некоторых случаях модифицированные небольшими количествами металлов группы железа или щелочными металлами (натрий и калий). [c.158]

    Металлы группы цинка взаимодействуют с элементарными окислителями, особенно активно с галогенами, дал<е при обычной температуре. В результате взаимодействия с кислородом при обычной темиературе на поверхности цинка и кадмия образуется тончайшая оксидная пленка, которая защищает эти металлы ог дальнейшего окисления. При нагревании цинк и кадмий образуют с кислородом оксиды ZnO и dO. Ртуть довольно легко окисляется кислородом при нагревании до невысокой температуры, однако образующийся оксид HgO, будучи термически непрочным, при высокой температуре легко разлагается, Цушк и к.ддмий при нагревании образуют с серой сульфиды ZnS и dS, а ртуть при растирании с серой образует сульфид HgS даже ири обычной температуре. С азотом, водородом и углеродом металлы группы цинка в обычных условиях ие взаимодействуют. [c.330]

    В процессе гидрокрекинга, направленном на получение реактивного топлива или сырья для производства масел, где требуется глубокое гидрирование ароматических углеводородов, на предварительной стадии предлагаются к использованию полифункциональные катализаторы гидроочистки-гидрирования 5-424 (Шелл), ТК-561 (Хальдор Топсё) или система катализаторов гидроочиетки и гидрирования ГП + НМГ (ВНИИ НП). Катализаторы гидрирования серии НМГ отличаются повышенным (до 70% мае.) содержанием гидрирующих металлов. Катализаторы, содержащие оксиды металлов VI и VПI групп, перед эксплуатацией подвергают сульфидированию. [c.254]

    ПромышленЕше катализаторы, несмотря на их доступность и относительно невысокую (за исключением АП-64 АП-56) стоимость, недостаточно технологичны при приготовлении катализаторных покрытий из-за необходимости дробления гранул и отбора фракции измельченного катализатора с размером частиц 0,15 мм и менее. Кроме того, относительно узкий набор оксидов металлов в промышленных катализаторах не позво-ля 5т детально изучить полноценный ряд их активности при окислении углеводородов. В связи с этим была исследована в качестве компонентов катализаторного покрытия большая группа ультрадисперсных порошков (УДП) как индивидуальных оксидов металлов, так и смесей различных оксидов, включающих оксиды кобальта, никеля, марганца, церия, железа, хрэма, меди, циркония. Эти оксиды, по данным [4], ориентировочно располагаются в следующий ряд активности в реакциях окисления  [c.132]

    При введении в состав расплава катионов первой группы отношение О 81 постепенно увеличивается, а связи 51—О—81 заменяются на 51—О—Ме (здесь Ме — металл). В этом случае пространственные комплексы все более и более дробятся. Все большее количество анионов кислорода оказывается необобщеиным, принадлежащим только одному тетраэдру. Образующиеся кремнекислородные комплексы напоминают кремнекислородные группировки в решетках кристаллических силикатов, имеющих ту же величину отношения О 81. Это могут быть слои, ленты, цепочки, кольца и отдельные тетраэдры [5104]. При содержании 0,10 молярной доли МегО или 0,20—МеО в значительной мере деформированная сетка из 5102 распадается на отдельные куски. Когда отношение О 51 достигает величины порядка 2,5, в расплаве превалируют комплексные анионы [51205] , которые образуют слои. При дальнейшем введении оксида металла возникают одномерные цепочки [810з]1 , в которых отношение О 81 равно 3. В присутствии комплексообразующих катионов А13+, В , Р + состав и строение комплексов усложняются. Полимеризованные кремнекислородные анионы в расплавах в той или иной степени отражают структуры твердых силикатов. [c.186]

    Проблема структуры и свойств анодных оксидных слоев на электродах относится к числу важнейших проблем электрохимии. Однако даже для простейших модельных систем эта проблема далека от разрешения, что связано с ее большой сложностью и многоплановостью. Наиболее подробно строение и свойства оксидных слоев исследованы на металлах группы платины. На этих металлах было обнаружено образование слоев адсорбированного кислорода, хемосорбционных оксидных слоев, полислоев фазового оксида, а также подползание кислорода под поверхностный слой металла. Для адсорбционных и хемо- [c.371]

    Весьма важное место в современной технике занимают замечательные материалы — керметы (керамико-металлические материалы) — микрогетерогенные композиции из металлов и неметаллов, сочетающие тугоплавкость, твердость и жаропрочность керамики с электро- и теплопроводностью, а также пластичностью металлов. В качестве неметаллических компонентов используют различные тугоплавкие оксиды, металлоподобные соединения неметаллов (карбиды, бориды) и другие неметаллы, обладающие высокой температурой плавления и химической стойкостью. В качестве металлической составляющей обычно используют металлы группы железа (Fe, Со, Ni), либо металлы VI группы (Сг, W, Мо). [c.447]

    Физические свойства оксидов изменяются закономерно и соответственно изменению свойств элементов по периодам и группам. На рис. 80 представлена зависимость температуры плавления оксидов от порядкового номера элемента. При обычной температуре оксиды металлов — твердые кристаллические вещества, оксиды неметаллов могут быть в газообразном (SO2, СО и др.), в жидком (Н2О и др.) и твердом (Р2О3, Р2О5, Si02 и др.) агрегатных состояниях. [c.239]

    По существу, целью всех многочисленных теорий катализа, которые начали появляться еще в прошлом столетии, было предвидение каталитического действия. Но, пожалуй, началом решения этой задачи следует считать рекомендации по подбору катализаторов, которые содержались в мультиплетной теории А. А. Баландина, теории активных центров X. С. Тэйлора и 3. К. Ридила, в классификации каталитических процессов С. 3. Рогинского, а затем в ряде электронных теорий. В результате появились более или менее общие и проверенные выводы о специфическом характере каталитического действия определенных, правда, довольно обширных групп катализаторов, например, для реакций гидро- и дегидрогенизации, окисления, галогенироваиия — металлы и оксиды металлов— полупроводники для реакций гидратации — дегидратации, гидрогалогенирования, алкилирования алкилгалогенидами — бренстедовские и льюисовские кислоты и основания. Но подбор [c.248]

    Реакционноспособные ангидридные группы могут взаимодействовать с аминами, оксидами металлов, что позволяет осуществлять дальнейшую модификацию или сшивание полимерных продуктов реакции с малеиновым ангидридом. Подобно эпоксидиро-ванным полимерам, они обладают повышенной полярностью, а следовательно, более высокой когезионной прочностью, большей адгезией к полярным субстратам. [c.287]

    Это — металл (на внешнем уровне — два электрона). Максимальная степень окисления равна +7, промежуточные степени окисления равны +2 (как у всех -металлов групп с высокими номерами) и +4 (7 2=3,5 с округлением до 4). Формулы соответствующих оксидов МпгО , МпО и МпОг, первый из которых имеет кислотный характер (степень окисления больше 4), второй — основный (степень окисления меньше 3) и третий — амфотерный. Формулы отвечающих им гидроксидов НМПО4, Мп(ОН)2 и Мп (ОН),. [c.208]

    В воде оксиды металлов П1А.-группы нерастворимы кристаллические модификации AlgOg и ОазОд нерастворимы и в кислотах, а в щелочах они растворяются с трудом при длительном нагревании. [c.412]

    Для всех элементов характерно образование комплексных соединений (для ртути нехарактерны комплексы с ЫНз). Все элементы дают комплексные соединения с галогенид-ионами. В ряду 2п—С(1—Hg устойчивость таких комплексов возрастает. Оксиды ПБ группы амфотерны, по ряду 2п—Сс1—Hg амфотерность оксидов падает. Большинство солей цинка и кадмия растворимо в воде и подвергается гидролизу. Соли ртути, как правило, нерастворимы в воде и слабые электролиты. Все производные элементов ПБ группы токсичны. Соединения ртути — сильнейшие яды. Металлы 2п, Сё, Hg легкоплавки и легколетучи. [c.559]

    Все характеристические оксиды, как известно, относятся к основным и кислотным. Первые являются оксидами металлов, вторые генетически связаны с неметаллами. Поскольку нет четкой границы между металлами и неметаллами, существует большая группа амфотерных оксидов. Амфотерность определяется не только положением элемента в периодической системе, но и зависит от его степени окисления. Ориентируясь на разность ОЭО, можно утверждать, что оксиды металлов должны быть преимущественно ионными, а оксиды неметаллов — преимущественно ковалентными. Поскольку для одного и того же элемента с увеличением степени окисления его электроотрицательность растет в этом направлении от низших к высшим оксидам растет ковалентный вклад. Вследствие этого наблюдается изменение свойств оксидов от основных к кислотным. Например, ОЭОсг(+2> = 1,4, ОЭОсп+з) = 1,6, ОЭОсг(+б>=2,4 и свойства оксидов закономерно изменяются  [c.62]


Смотреть страницы где упоминается термин Оксиды металлов IV и V групп: [c.237]    [c.238]    [c.50]    [c.276]    [c.336]    [c.202]    [c.221]    [c.188]    [c.238]    [c.275]   
Смотреть главы в:

Окислительные превращения метана -> Оксиды металлов IV и V групп

Окислительные превращения метана -> Оксиды металлов IV и V групп




ПОИСК





Смотрите так же термины и статьи:

Оксид металлов



© 2025 chem21.info Реклама на сайте