Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация избирательная

    Перспективы катализа необозримы. Благодаря тонкой избирательности некоторых катализаторов осуществлены и осуществляются различные многостадийные процессы, недоступные методам классической органической химии и осуществляющиеся как бы в одну стадию (синтез углеводородов, поликонденсации, полимеризации, синтезы на базе олефинов и ацетиленов и т, д.). Микрогетерогенные или ферментативные реакции, происходящие в организмах животных и растений, протекают очень сложны.ми и часто еще не достаточно ясными путями. Вероятно, в недалеком будущем настанет время, когда и эти процессы будут осуществлены обычными каталитическими путями, что явится, новой победной главой в эволюции катализа. [c.780]


    Бутаны. В связи с развитием избирательных катализаторов стало возможно узко фракционное дегидрирование бутанов. Особенно эффективна базирующаяся на окиси алюминия и активированная щелочью окись хрома [238, 242]. При проведении процесса при атмосферном давлении или ниже не наблюдается никакой существенной полимеризации и структурной изомеризации. Для пентанов катализатор не эффективен, так как происходит крекинг углеводородов. [c.100]

    Полимеризация с раскрытием кольца делает принципиально возможным другой путь получения диеновых эластомеров, заключающийся в избирательной циклической ди- или тримеризации диена с последующей дециклизацией. При этом 70—80% теплоты полимеризации выделяется на первой стадии процесса, где ввиду низкой вязкости реакционной смеси теплосъем осуществить значительно легче. Такой метод существенно повысит производительность полимеризационного оборудования. [c.318]

    Высокая емкость и избирательность адсорбента по отношению к воде и минимальная адсорбция олефинов имеют большое значение, так как исключают полимеризацию олефинов в порах и удлиняют срок службы адсорбента. При использовании других осушителей с большими размерами пор происходит полимеризация непредельных углеводородов, что приводит к быстрому снижению емкости адсорбентов. [c.105]

    Чисто термические процессы, как правило, характеризуются высокими энергиями активации, обусловленными большой прочностью связей С—С, С—Н и Н—Н, которые надлежит разорвать и перегруппировать (60—100 ккал/моль). Скорости этих реакций ничтожно малы при низких температурах, при которых возможно протекание экзотермических реакций (гидрогенизации, алкилирования, полимеризации). Вот почему возможность проводить те или иные определенные процессы превращения углеводородов тесно связана с созданием высокоактивных и селективных катализаторов, избирательно благоприятствующих одному (или нескольким) из большого числа возможных реакционных путей. [c.12]

    В зависимости от природы веществ компоненты смеси могут обладать ограниченной взаимной растворимостью, образуя, таким образом, отдельные фазы многокомпонентной системы. В простейшем случае при смешении жидкостей образуются две фазы, в каждой из которых содержатся отдельные компоненты органического и неорганического происхождения. Иногда такие системы образуются искусственно путем добавления компонента, склонного к избирательному растворению. Добавление такого компонента (разделяющего агента) изменяет условия фазового равновесия системы, увеличивая движущую силу процесса, и позволяет применить специальный метод для разделения компонентов исходной смеси. Часто введение разделяющего агента в исходную смесь обуславливается не столько близостью свойств компонентов, а склонностью к разложению, полимеризации и т. п. при высоких температурах. [c.285]


    Температура. Тепло реакции должно отводиться своевременно, иначе температура в реакционной зоне повышается и побочные реакции, в том числе полимеризация, усиливаются. Со снижением температуры избирательность процесса повышается, т. е. преобладают основные реакции алкилирования в результате качество алкилата улучшается. Однако при низких температурах кислота застывает. Обычно алкилирование проводят при 7—10°С. [c.306]

    Полимеризация в присутствии хлорида алюминия. Хлорид алюминия отличается от широко применяемых катализаторов - фосфорной и серной кислот - более высокой каталитической активностью, большей избирательностью и применяется главным образом, например, при получении полиизобутиленов. [c.45]

    Выбор ионогенных групп катионитов и анионитов зависит от назначения ионообменных смол. Сейчас есть смолы с высокой избирательной способностью к обмену ионов определенного типа. При синтезе ионитов используют такие ионогенные группы, которые являются аналитическими реактивами, осаждающими тот или иной ион. Ионообменные смолы получают как по реакции поликонденсации, так и по реакции полимеризации. [c.219]

    В промышленности в основном используется серная кислота с концентрацией 50 % и 60—65 % [60, с. 724—732]. Достоинством метода с использованием 50 %-ной серной кислоты (фирма КФР, Франция) является высокая степень чистоты получаемого изобутилена, высокая избирательность, отсутствие полимеризации на стадии экстракции и исключение стадии гидролиза изобутилсерной кислоты, которая разлагается простым нагреванием. Недостатки процесса более низкая скорость поглощения и сильная коррозия во всех узлах технологической схемы, что требует применения специального оборудования, футерованного свинцом. [c.220]

    Катализаторы полимеризации. Трехчленные гетероциклы (этиленимин, окись этилена, этиленсульфид) в абсолютно чистом виде (кинетически вполне устойчивы ввиду близости энергетических характеристик всех эндоциклических связей. Действительно, было показано [21], что абсолютно сухой этиленимин в чистом виде не полимеризуется даже при 150° С. Однако эти гетероциклы полимеризуются в присутствии определенных активаторов (катализаторов полимеризации), избирательно действующих на связь углерод — гетероатом. Обцчными поли-меризующими агентами являются кислоты [2—5, 7, 22—25] (включая углекислоту [12, 26, 27]), кислые соли [2, 3] и фенол [28], алкилирующие агенты [3, 29—32] (в том числе ди- и поли-галогениды углеводородов и простых эфиров [32]), трехфтористый бор [3, 16, 33, 34], безводное хлорное железо [34], соли лназония [35], нитрат или перхлорат серебра [36], поверхностно-активные вещества (кизельгур, активированный уголь [2], окись алюминия, силикагель и т. д. [16]), аммиак под да(вле-нием [37, 38], амины [38] и вода . Любой реагент действует как катализатор полимеризации этиленимина, если он может продуцировать четырехвалентный азот в иминном цикле (путем со-леобразования, окисления или координации). [c.160]

    В зависимости от состава сырья и заданного целевого назначения процесса различают избирательную (селективную) и общую полимеризацию. Существуют 1) каталитическая и 2) термическая полимеризация. [c.269]

    Процесс избирательной полимеризации с фосфорной кислотой можно уяснить на сравнительно простом примере полимеризации пропена. [c.269]

Фиг. 93. Установка для избирательной полимеризации бутан-бутеновой Фиг. 93. Установка для избирательной полимеризации бутан-бутеновой
    Катализатор при избирательной полимеризации способен сохранять активность в течение 20—50 суток работы, после чего катализатор обычно выбрасывают и заменяют свежим. Удельный расход катализатора составляет до 0,3% веса полученного продукта. [c.274]

    Катализатор, работающий в процессе общей полимеризации, где условия процесса несколько иные, чем при избирательной полимеризации, подвергается периодической регенерации. Регенерация производится осторожным выжиганием с последующей гидратацией катализатора (пропарка водяным паром) для придания ему требуемого химического состава. Такая регенерация может быть повторена 5 раз. [c.274]

    Избирательная полимеризация и последующая гидрогенизация дают компонент стооктанового авиационного бензина со следующими примерно характеристиками октановое число 91 — 97, с 4 мл ЭЖ—104 10% выкипает до 89°, 50%—до 115°, 90% —до 150°, упругость паров не выше 360 мм рт. ст. Этот [c.277]

    Двустадийный процесс избирательной полимеризации бутенов и гидрирования диизобутенов осуществляется обычно при наличии значительных количеств бутан-бутеновой фракции этот способ производства использует бутены в меньшей мере, чем алкилирование изобутана бутенами, где все количество бутенов и равное ему количество изобутана вступают в реакцию. [c.427]


    Ионная полимеризация более избирательна, одни мономеры полимеризуются только по катионному механизму, другие только по анионному механизму. [c.104]

    Увеличение степени компенсации под действием катализатора достигается в результате оптимальной взаимной ориентации реагентов, связываемых катализатором, облегчения электронных переходов, осуществляемых через катализатор, поляризации молекул реагентов и многих других взаимодействий. Согласно Борес-кову, наиболее полно компенсация энергии разрывающихся связей осуществляется в каталитических реакциях, протекающих по слитному (или ассоциативному) механизму такой механизм типичен для низкотемпературных (300—400 К) гомогенных реакций, как кислотно-основных (изомеризация, алкилирование, дегидратация и т. д.), так и окислительно-восстановительных реакций (стереоспецифическая полимеризация, избирательное гидрирование и др. они обычно катализируются металлкомплексными соединениями). [c.98]

    Избирательность. Широкое применение каталитических процессов требует подбора катализаторов, избирательно ускоряющих процесс превращения сырья в желательном направлении. Например, крекинг углеводородов сопровождается реакциями дегидрогенизации, изомеризации, полимеризации, циклизации и др. Подбором катализатора и технологических параметров осуществляют процесс в нужном направлении с преимущественным выходом желаемых продуктов. Принцип избирательности используют при выборе алюмосиликатных катализаторов различного строения и структуры, учитывая при этом относительное значение выходов и качеств целевых продуктов. Например, для превращения низкокипящего термически стабильного сырья прил1еняют высокоактивные синтетические катализаторы раз- чожение же тяжелых смолистых дистиллятов осуществляют на менее активных катализаторах. Некоторые природные катализаторы [c.15]

    С другой стороны, повышение температуры интенсифицирует побочные реакции полимеризации и окисления (сульфирования) углеводородов в большей мере, чем реакцию алкнлирования. Поэтому избирательность реакции алкилирования с повышением температуры снижается. В результате увеличивается расход катализатора на реакцию, снижается выход алкилчта и ухудшае ся его качество (антидетонационная характеристика, стабильность и др.). Экономичность процесса уменьшается. [c.90]

    Алфиновые катализаторы — трехкомпонентные катализаторы полимеризации, состоящие из RNa (R — алкил, алкенил, арил), алко-голята Na и Na i (или K I, КВг, NaBr и т. д.). Они обладают высокой активностью, избирательностью (к диенам) и стереоспецифичностью (бутадиен полимеризуется в транс-1,4-полибутадиен). [c.235]

    Советскими авторами разработан эффективный метод разделения продуктов полимеризации ацетилена и выделения чистого винилацетилена. Он основан на избирательной абсорбции растворителями (ксилолом, этилбензолом, хлорбензолом и др.) с последующей десорбцией и ректификацией винилацетилена из его раствора в смеси с дивинилацетиленом и высшими полимерами ацетилена. Метод характеризуется большей безопасностью по сравнению с применяемым методом низкотемпературной конденсации (фирмы Du Pont, Bayer А. G.). В процессе используются эффективные ингибиторы окнсления (полифенолы, ароматические амины и др.). Выход винилацетилена составляет примерно 80% на прореагировавший ацетилен. [c.420]

    Возможность очистки глинами, флоридином (гумбрином) и другими адсорбентами основана на избирательном поглощении ими преимущественно смол, сернистых соединений и иных вредных иримесей. Эта полезная избирательная адсорбция сопровождается (особенно заметно при использовании в качестве сорбента флоридина или кавказских глин — гумбрина) реакциями полимеризации и конденсации диолефиновых и олефиновых углеводородов (выход полимеров обычно составляет [c.317]

    Так как при большой кратности изсбутана избирательность процесса увеличивается, расход олефинов на единицу массы изобутана сокращается. Большое значение имеет интенсивность перемешивания углеводородной фазы и катализатора в связи с тем, что взаимная растворимость их очень невелика. Очевидно, реакция идет в катализаторной фазе и на границе раздела фаз между растворенными в катализаторе изобутаьюм и олефиновой частью сырья. В отсутствие или при недостатке молекул нзобутана контакт олефина с кислотой вызывает полимеризацию оле([)инов. Интенсивное перемешивание способствует также отделению от катализатора образовавшегося алкилата. Стремление увеличить концентрацию изобутана в месте ввода смеси привело к разработке специальных смесительных и циркуляционных устройств, гюзволяющих увеличивать соотгюшеиие изобутаиа к олефину в поступающей смеси до 100 1 и более. Однако решающую роль это соотношение играет в объеме реактора. [c.333]

    Это влияние давления иа реакции крекинга, проявляющееся в большей или меиьшо стенепи иа избирательности расщепления, сначала каягется чрезвычайно странным. Давление оказывает решающее влияние только на вторичные реакг(ии, ири которых вследствие полимеризации исчезают [c.226]

    Риформинг является процессом раздельного (избирательного) крекинга. Вследствие низкого молекулярного веса исходного материала крекирование проводят при высоких температуре и давлении. Степень превращения за один цикл может быть настолько большой, что отпадает необходимость в рециркуляции непрореагировавшей части. При риформировании бензина октановое число увеличивается в результате образования олефинов и углеводородов с разветвленной структурой, реакций ароматизации, процессов термической полимеризации олефшюв и т. д. [c.252]

    Под действием фосфорнокислотного катализатора изобутилен реагирует чрезвычайно легко, образуя при 30° исключительно диизобутилен. В присутствии бутенов-1 и -2 нроисходит смешанная полимеризация, но продукты реакции опять-таки состоят только пз олефинов. Бутен-2 реагирует быстрее бутена-1. Вследствие большой реакциошюй способности изобутилена был разработан способ его избирательно полимеризации. Условия процесса при. этом настолько мягкие, что из смесеИ олефинов реагирует только изобутилен, почти не образуя смешатгых полимеров с другими бутиленами. Преимущества этого процесса будут оппсапы позже. [c.296]

    Следопательно, при частичном гидрировании избирательному (селективному) гидрированию подвергаются именно те олефины, из которых при полимеризации образуются качественные смазочные масла. Кроме того, из-за отсутствия или снижения содержания таких о.пефипов более инертные изомеры, которые в другом случае полимеризуются вместе с более активными, в реакцию не вступают, и результате чего снижается выход смазочных масел. [c.712]

    В случае полимеризации изопрена об])азуется еще один тип стереорегуляриого изомера. Это обусловлено тем, что 1—2-сочетание мономерных звеньев в полиизоирене неидентично сочетанию 3—4. Изомеры разных типои удается разделить достаточно тщательно, подбирая избирательно действующие растворители. [c.233]

    Ранее в качестве катализатора полимеризации пользопались серной кислотой [3] существует два варианта сернокислотной полимеризации горячий и холодный процессы. В настоящее время серную кислоту применяют главным образом для избирательной абсорбции из б у та -бутиленовой фракции изобутилена, служащего сырьем в производстве синтетического каучука. Продуктами реакции являются как димер (динзобутилен), так и смесь бутана и н-бутилена. Динзобутилен также применяется в небольших количествах в химической промышленности. [c.239]

    Наиболее эффективными стереоспецифическими катализаторами полимеризации являются гетерогенные комплексные металлоорганические катализаторы Циглера — Натта. Они получаются взаимодействием металлоорганических соединений металлов I—П1 групп Периодической системы с соединениями (преимущественно галогенидами) переходных металлов IV—У1П групп. Наиболее распространенная каталитическая система —это смесь Т1С1з и А1(С2Н5)з. Варьирование компонентов катализатора позволяет получать строго избирательные каталитические комплексы по отношению к соответствующим мономерам, а также высокую стереоспецифичность присоединения мономера к растущей цепи. Открытие комплексных металлоорганических катализаторов позволило получить высокомолекулярные стереорегулярные кристаллические поли-а-олефины, полидиены, полистиролы и др. (например, изо-тактические полипропилен, поли-а-бутен, 1,2-полибутадиен, 1,2- и 3,4-полиизопрены). При полимеризации диеновых углеводородов под влиянием катализаторов Циглера — Натта получают также стереорегулярные 1,4-полидиены, в частности, 1,4-чыс-полиизопрен, , 4-цис- и 1,4-транс-полибутадиены и др. [c.27]

    Реакция потекает по анионно-координационному механизму. Каждый акт присоединения мономера начинается со стадии образования я-комплекса двойной связи мономера (донор электронов) с переходным металлом катализатора (акцептор электронов). Благодаря наличию неспаренных я-электронов переходные элементы акцептируют электроны электронодонорных веществ, образуя комплексные соединения с высоким координационным числом (6—8). Возникновение я-комплекса приводит к ослаблению связи Ме---К, что облегчает внедрение мономера в корень растущей полимерной цепи. Такой механизм позволяет объяснить высокую избирательность катализаторов Циглера — Натта. К образованию я-комплексов Склонны мономеры с повыщенной электронной плотностью у двойной связи, т. е. мономеры, полимеризующиеся по механизму катионной полимеризации. В то же время внедрение очередного мономера по связи Ме—С характерно для реакций анионного роста цепи. [c.28]

    Изменением внутримакромолекулярной пористости анионита можно регулировать избирательное поглощение анионов из сложных смесей электролитов. Было, например, установлено, что для смеси таких ионов, как Вг и Р" или Вг и С1 или Вг н 1 , наибольшей избирательностью обладает анионит, получаемый полимеризацией стирола и дивинилбензола с 16%-ным содержанием мостикообрязующего компонента в исходной смеси. [c.69]

    Каталитическая полимеризация с фосфорной кислотой. Использованием бутан-бутеновой фракции в качестве сырья для избирательной полимеризации и соблюдением определенного режима процесса удается получить ценный полупродукт для производства авиационного бензина. Бутан-бутеновая фракция газов крекинга содержит 10—15% изобутена, около 30% н-бутена, 30% н-бутана, 20% изобутана, 3—15 % пропана и пропеиа (весовые проценты). [c.270]

    Технологическая схема и действие установки для избирательной полимеризации заключаются в следующем (фиг. 93). Иа бутан-бутеновой фракции при помощи двухступенчатой щелочной очистки удаляют сероводород и меркаптаны . Для этого служат смесители С1 и отстойники 01. Очищенное сырье нагревается в паровом нагревателе Г/ и поступает в реактор Р1. Температура в реакторе 160—180° давление 40—45 ати. Фосфорнокислый катализатор при температуре реакции может отщеплять воду, что ведет к потере его активности. Для предотвращения потери воды (дегидратации) иногда подкачивают в сырье, подаваемое-в реактор, некоторое количество дестиллированной воды. На  [c.271]

    На фиг. 95 показана схема взаимной связи и последовательности проведения описанных выше процессов подготовки сырья (газофракционировки), избирательной полимеризации бутенов и гидрогенизации полимеров для получения изооктана (гидрокодимера) приведены примеры выхода продуктов в процентах веса исходного сырья для каждого процесса. [c.278]


Смотреть страницы где упоминается термин Полимеризация избирательная: [c.203]    [c.363]    [c.158]    [c.217]    [c.357]    [c.16]    [c.5]    [c.299]    [c.296]    [c.279]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте