Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы и сплавы с повышенной коррозионной стойкостью

    Легирование металлов. Методы защиты, связанные с изменением свойств корродирующего металла, осуществляются при помощи легирования. Легирование — эффективный (хотя обычно дорогой) метод повышения коррозионной стойкости металлов. При легировании в состав сплава обычно вводят компоненты, вызывающие пассивирование металла. В качестве таких компонентов применяются хром, никель, вольфрам и др. Широкое применение нашло легирование для защиты от газовой коррозии. При этом используют сплавы, обладающие высокой жаростойкостью и жаропрочностью. [c.217]


    Сплав цинк — никель. Легирование цинковых покрытий никелем способствует повышению коррозионной стойкости их с одновременным сохранением их потенциала по отношению к защищаемому металлу, например стали. Никель с цинком образует интерметаллическое соединение. Так, покрытия, содержащие 2% никеля, в атмосфере с постоянной влажностью при 20 5°С остаются светлыми более продолжительное время, чем цинковые. Наиболее коррозионно-стойкими являются покрытия Zn — Ni, содержащие 25-28% Ni. Такие покрытия по отношению к стали являются катодом. Твердость покрытий цинк — никель при 98% Zn составляет 115 — 125 кгс/мм , а при 72 — 87% Zn соответственно 400 — 450 кгс/мм . В большинстве случаев их получают из цианистого или аммиакатного электролита. [c.141]

    Плакирование является наиболее совершенным методом защиты малостойких металлов сплавами или металлами, обладающими повышенной коррозионной стойкостью. [c.281]

    Борьба с коррозией — большая народнохозяйственная задача. Исследование механизма, скорости коррозии и проведение мероприятий по защите металлов от разрушения имеют первостепенное значение. Металлы от коррозии защищают, нанося на них покрытия из более стойких в данной среде металлов, покрытия из лаков, красок, эмалей и других материалов. Некоторые металлы, например, железо, хром, никель, кобальт, алюминий, титан, тантал, вольфрам, ниобий, под влиянием кислорода и в различных окислительных средах способны пассивироваться, т. е. переходить в состояние повышенной коррозионной устойчивости (в условиях, когда с термодинамической точки зрения они являются вполне реакционноспособными), вызванное торможением анодного процесса. Способность пассивироваться широко используется для защиты этих металлов от коррозии и для придания сплавам повышенной коррозионной стойкости методом легирования. Так, введя в сплавы на основе железа хром, никель, алюминий и неко- [c.176]

    Монография предназначена для научных работников и специалистов металлургической, машиностроительной и химической промышленности, занятых проблемами защиты металлов и применения сплавов повышенной коррозионной стойкости. [c.2]

    Легирование металлов. Для улучшения свойств металлов, в том числе для обеспечения их коррозионной стойкости, в состав сплавов вводят различные вещества (легирующие добавки). Так, коррозионная стойкость стали может быть повышена введением хрома, никеля, молибдена. Коррозионная стойкость меди возрастает при добавлении к ней бериллия и алюминия. Легирование с целью повышения коррозионной стойкости применяется также для алюминия, к которому добавляют молибден, хром или никель. [c.219]


    Наука о коррозии металлов базируется, в основном, на двух смежных дисциплинах — металловедении и физической химии, и занимается установлением общих закономерностей разрушения структуры металла или сплава под влиянием воздействия внешней среды. Особенно большое значение в общем процессе развития современной техники имеет практическое направление науки о коррозии металлов — их защита, т. е. разработка новых сплавов повышенной коррозионной стойкости и более эффективных методов защиты металлических конструкций (машин, аппаратов, сооружений, средств транспорта и т. д.) от коррозионного разрушения в самых разнообразных условиях их эксплуатации. [c.13]

    Цирконий рассматривается как один из потенциально возможных металлов, на базе которого могут быть созданы сплавы повышенной коррозионной стойкости и прочности. Интенсивно исследуют сплавы на основе циркония. Примесь к чистому цирконию таких металлов как А1, Са, Mg, 51, РЬ и газов N2, О2, Нг, а также углерода, вредна. Наоборот, небольшое содержание в цирконии таких металлов, как 5п, ЫЬ, Ре, N1, Сг, оказывается благоприятным. Введение в цирконий олова и одновременно небольших добавок Ре, N1 и Сг помогает в значительной мере преодолеть вредное влияние примесей азота и углерода в цирконии на ухудшение его коррозионной стойкости в воде при повышенных температурах. [c.257]

    В различных отраслях промышленности находят широкое применение защитные гальванические покрытия металлами и сплавами, которые обладают повышенной коррозионной стойкостью, твердостью, декоративными качествами, жаропрочными свойствами и др. Для обоснованного выбора оптимальных условий получения функциональных покрытий с заданными свойствами большое значение имеет изучение закономерностей, устанавливающих связь свойств гальванических покрытий с ионным составом электролита, механизмом и кинетикой электрохимических процессов, параметрами стадии нанесения электрохимических покрытий на металлы и др. Большое значение имеет разработка стабильных, нетоксичных и производительных электролитов. [c.22]

    В настоящем сообщении приводятся результаты опытов по определению границ устойчивого пассивного состояния никель-молибденовых сплавов й некоторых других металлов, обладающих повышенной коррозионной стойкостью в растворах соляной кислоты. [c.52]

    Техническое перевооружение производства, создание принципиально новой техники и прогрессивной технологии находятся в прямой зависимости от правильного, эффективного, экономически выгодного применения металлов и их сплавов повышенной коррозионной стойкости. [c.4]

    ПОВЫШЕНИЕ КОРРОЗИОННОЙ СТОЙКОСТИ МЕТАЛЛОВ И СПЛАВОВ НА ОСНОВЕ ПОВЫШЕНИЯ ИХ ПАССИВИРУЕМОСТИ [c.322]

    Повышение коррозионной стойкости металлов и сплавов на основе повышения их пассивируемости может быть достигнуто многими способами  [c.323]

    Среди металлических материалов исключительное положение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настояш,ее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых и интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие металлы, как никель. [c.175]

    В большинстве случаев повышенную коррозионную стойкость имеют металлы большей степени чистоты, имеющие миниму м инородных включений, а также однофазные сплавы по сравнению с многофазными. [c.52]

    Увеличивает анодную пассивируемость сплавов добавление высокозарядных металлических или металлоидных ионов, которые повышают плотность тока катионных зарядов до необходимого для пассивации уровня. В качестве таких ионов можно использовать металлы Сг, У, V, Мп или металлоиды Si, С, В, Р, 8 и N. Повышают пассивируемость сталей также легированием небольшими добавками электрохимически положительных металлов (Ш, Рс1, Ки, Ке), облагораживающих потенциал коррозии металла положительнее потенциала полной пассивации и обеспечивающих достаточную для пассивации плотность катионного тока. Исследованиями последних лет было показано, что для достижения эффекта повышения коррозионной стойкости металлов достаточно обрабатывать только поверхностные слои металла. [c.73]

    Среди металлических материалов исключительное полол<ение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых н интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нержавеющих сталей, среди которых [c.136]


    Добавление к металлам различных компонентов, которые уменьшают неравномерность распределения вакантных мест и узлов с повышенной электрической плотностью, должно приводить к повышению устойчивости металлов против коррозионного воздействия гетероорганических соединений. Действительно, сплавы меди с цинком (бронзы, латуни) имеют лучшую коррозионную стойкость, чем чистая медь добавление к железу небольших количеств хрома, ванадия, никеля, углерода и других приводит к резкому повышению коррозионной стойкости этих сплавов. [c.242]

    При катодной поляризации металлу можно сообщить такой отрицательный потенциал, при котором окисление его становится термодинамически маловероятным. Анодная поляризация с целью снижения коррозии имеет смысл только для металлов, склонных к переходу в пассивное состояние, определяемое как состояние повышенной коррозионной стойкости металла или сплава (в условиях, при которых они являются термодинамически вполне реакционноспособными), вызванное преимущественным торможением анодного процесса. [c.9]

    Патент США, № 4089707, 1978 г. Описывается методика повышения коррозионной стойкости свинца и его сплавов, применяемых для покрытия металлов, характеризующаяся последовательной обработкой поверхности металла с покрытием соляной кислотой. [c.217]

    В настоящей монографии автор поставил себе задачу на основе своих работ, а также исследований, опубликованных за последнее время в отечественной и зарубежной литературе, изложить теорию атмосферной коррозии — механизм процесса и закономерности его развития в зависимости от состава атмосферы и сплава, электрохимию металлов в тонких слоях электролитов, коррозионное поведение металлов и сплавов в различных климатических и атмосферных условиях, пути повышения коррозионной стойкости металлических сплавов. [c.5]

    Новый метод анодной электрохимической защиты может успешно использоваться для повышения коррозионной стойкости углеродистых сталей, нержавеющих сталей, титана и других промышленных сплавов. Следующие условия необходимы для успешного применения этого метода защиты 1) принципиальная возможность пассивации металла при анодной поляризации в реагенте, действию которого он подвергается 2) небольшой ток для поддержания пассивного состояния (это обеспечит высокую коррозионную стойкость и малый расход электроэнергии) 3) обеспечение автоматической подачи на установку больших анодных токов, необходимых для первичной пассивации системы или для репассивации после ее случайного нарушения (например, вследствие перерыва защиты) 4) достаточно большая область потен- [c.151]

    Сплавы ванадия. Ванадия содерхсится в земной коре больше, чем других металлов. Как основа коррозионностойких сплавов ванадий - перспективный металл. Однако его коррозионная стойкость ниже, чем остальных тугоплавких металлов (Та, ЫЬ, Мо). Поэтому целью легирования ванадия является, в частности, повышение коррозионной стойкости. Ванадий (в виде феррованадия) применяется в черной металлургии как легирующий элемент, ()аскислитель и модификатор, и невысокая чистота ванадия по таким примесям, как О, Ы, С, Ре, 81, не является препятствием для его использования по этому назначению. Однако при использовании ванадия в качестве основы соответствующих сплавов содержание этих примесей имеет большое значение. Все указанные примеси ухудшают пластичность ванадия, и так называемый черновой ванадий, полученный методом восстановления из пятиокиси ванадия У Об, непластичен. Его необходимо подвергать дополнительной очистке электролизом и вакуумным переплавом. Для изготовления опытных плавок бьш выбран ванадий, рафинированный электронно-лучевым переплавом (полупромышленного производства), трех сортов. В табл. 1 приведено среднее содержание примесей в скобках указан разброс результатов для различньгк образцов. [c.8]

    В некоторых случаях возможно повышение коррозионной стойкости поср едством увеличения общей термодинамической стабильности сплава. Однако эти случаи, связанные с легированием сплава значительным количеством более стабильных или даже благородных металлов, имеют меньшее значение для создания промышленных конструкционных сплавов повышенной коррозионной стойкости. Гораздо большее практическое значение имеют пути повышения стойкости сплавов, базирующиеся на изменении электрохимической кинетики катодных и анодных процессов. [c.59]

    Легирование металлов — эффективный (хотя и дорогой) метод повышения коррозионной стойкости металлов. При легировании в состав сплава вводят компоненты, вызывающие пассивацию металла. В качестве таких компош итов применяют хром, никель, вольфрам и др. Широкое применение нашло легирование [c.234]

    При введении в систему Ре—С небольших добавок других металлов (легирование) общий вид диаграммы состояния сохраняется. Однако эти добавки способствуют стабилизации одних структурных составляющих и разрушению других. Так, легирование ванадием, хромом, вольфрамом стабилизирует структуру аустенита, что придает стали повышенную твердость и износоустойчиЕость. В то же время случайные включения цементита при этом подвергаются распаду за счет образования более прочных карбидов указанных легирующих металлов. Легирование белых чугунов переходными металлами с сильно дефектной -оболочкой (Т], V, Сг) приводит к разрушению цементита и образованию прослоек чешуйчатого графита между кристаллами сплава. Следствием этого является повышение ударной прочности. Добавки хрома и никеля, расширяющие область аустенита и стабилизирующие ее структуру, обеспечивают повышенную коррозионную стойкость сталей (нержавеющие стали), поскольку в гомогенных системах процессы коррозионного разрушения протекают медленнее. [c.415]

    Оксидированный а1юмииий и ого сплавы окрашивают в растворах органических красителей ита неорганических со ей с целью декоративной отделки имитируя зоюто, бронзу, латунь, медь и другие металлы и дополнительного повышения коррозионной стойкости [c.241]

    Сложность и большое число явлений, обусловливающих повышенную коррозионную стойкость металлов в водороде, не позволяют в настоящее время сформулировать научно обоснованную теорию водородостойкого легирования, хотя отдельные вопросы этой проблемы уже достаточно изучены. Водородной хрупкости металлов, влиянию водорода на свойства сталей, состоянию водорода в решетке металла, растворимости и диффузии водорода в металлах и сплавах посвящено большое число работ. [c.114]

    Во втором издании (первое - в 1986 г.) рассмотрены основные положения теории коррозии металлов и сплавов. Проанализировано влияние условий эксплуатации на коррозию конструкционных сплавов. Изложены принципы создания металлических сплавов повышенной стойкости. Приведены свойства важнейших конструкционых материалов, в том числе данные по жаропрочным и жаростойким конструкционным сплавам. Указаны способы повышения коррозионной стойкости поверхностное легирование, создание металлокерамических сплавов, получение сплавов в аморфном состоянии, современные методы борьбы с газовой коррозией. [c.160]

    Для повышения коррозионной стойкости, износостойкости, а также улучшения внешнего ввда изделий в промышленности широко используется злектролитическое нанесение металлических покрытий на поверхность сталей и сплавов. Покрытия бывают хромовые, никелевые, никель-кадмиевые, цинковые и др. Все покрытия в зависимости от величины и знака стандартного электродного потенциала металла покрытия и защищаемого металла делятся на анодные и катодные. Анодные в гальванопаре с защищаемым металлом являются анодом и активно растворяются, тормозя при этом коррозию защищаемого металла. К ним, например, относятся вднковые, коррозионно разрушающиеся в гальванопаре со сталью. Катодные в гальванопаре с основным металлом служат катодами и защищают металл, так как более коррозионно стойки. При локальном разрушении таких покрытий защищаемый металл, будучи анодом, интенсивно т рро-дирует. [c.117]

    Многие металлы чувствительны к скорости движения моржой воды относительно их поверхности. Для таких металлов, как железо и медь, существует критическое значение скорости воды, при превышении которого коррозия становится очень сильной. Пассивные металлы, например титан, некоторые никельхроммолибденовые сплавы и нержавеющие стали имеют тенденцию к повышению коррозионной стойкости при повышенных скоростях движения воды. [c.22]

    Факторы, влияющие на скорость коррозии. Состав и структура металла. Как правило, гетерогенная структура сплава является более опасной в коррозионном отношении, нежели гомогенная. При этом существенно ускоряют коррозию катодные (более положительные) вклю-чёння. Прн гомогенной структуре присутствие в твердом растворе компонента, имеющего более положительный потенциал, вызывает повышение коррозионной стойкости. Термообработка, [c.8]

    Винная кислота разрушает пассивную пленку на кремнистых чугунах, поэтому коррозионная стойкость их в этой среде при повышении температуры резко снижается. Алюминнево-кремнистые и алюминиево-марганцовистые сплавы по коррозионной стойкости близки к алюминию, но нх скорость коррозии увеличивается при загрязнении кислоты солями тяжелых металлов. Никель и многие сплавы на его основе стойки в растворах кислоты до [c.815]

    Си и 1,5-2,5 %) Ре. Он имеет повышенную коррозионную стойкость по сравнению с чистыми компонентами, входящими в его состав. Сплавы этого типа обладают также высокими механическими и технологическими свойствами, имеют большую прочность, хорошо прокатываются, отливаются, обрабатываются давлением и резанием. Монель-металл стоек в неокислительных неорганических кислотах при невысоких концентрациях, в растворе Н3РО4 высокой концентрации и в растворах плавиковой кислоты всех концентраций при всех температурах при ограниченном доступе воздуха. [c.209]

    Для повышения коррозионной стойкости оборудование изготовляют из легированных сталей, цветных металлов и их сплавов, широко применяют неметаллические антикоррозионные покрытия органического и неорганического происхождения. Кляг-сификация неметаллических защитных материалов приведена в специальной литературе. Материалы неорганического происхождения в основном используют как футеровочные, ими покрывают металлическую поверхность, на которую наносят обычно органический материал. В качестве скрепляющих применяют коррозионностойкие вяжущие материалы. [c.40]

    Именно наличием подобного слоя объясняется повышенная коррозионная стойкость в окислительных средах сплавов алюминия, хрома, никеля, титана и др. металлов. Таким же образом (по при повышенных т-рах) Б. с. формируются на поверхности материалов, используемых при высокой т-ре. В процессе взаимодействия контактирующих веществ происходят реакционная диффузия одного или нескольких из них в твердый материал, образование слоя пересыщенного твердого раствора и последующая перестройка его кристаллической решетки. В результате на поверхности материала образуется слой новых фаз (рис.), скорость роста к-рых определяется природой контактирующих веществ и условиями взаимодействия (темиературой, давлением, концентрацией вещества, временем). Формирование такого слоя возможно газопламенным напылением и др. способом. Если условие Пиллинга — Бедвортса выполняется, закономерности роста фаз в заданном интервале т-р описываются в основном зависимостями г/" = кт или у = /с 1п т, где у — толщина слоя новой фазы к, п — коэффициенты скорости роста фаз т — время взаимодействия. Чем меньще коэфф. к и больше коэфф. п, тем меньше влияние времени на скорость взаимодействия и тем, следовательно, лучшими барьерными свойствами обладает диффузионный слой. Значения коэфф. пик определяются природой контактирующих веществ и продуктов взаимодействия, кристаллохим. особенностями образующихся фаз, дефектностью кристаллической решетки, диффузионной подвижностью компонентов в ней, термодинамикой процесса. В общем случае чем выше прочность межатомной связи (большая часть ковалентных или ионных связей) в продуктах взаимодействия, тем вероятнее проявление ими барьерных свойств. Так, дибориды титана и циркония, окислы алюминия, магния и тория обнаруживают высокие барьерные свойства в контакте со мн. веществами. [c.120]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    ОКСИДИРОВАНИЕ (нем. oxydieren — окислять, от греч, сЁбд — кислый) — создание на поверхности металлических изделий оксидной (окис-ной) пленки. Пленка, образующаяся в результате хим. взаимодействия с газовой или жидкой средой (см. Окалина), придает изделиям повышенные коррозионную стойкость и износостойкость, улучшает их электроизоляционные св-ва и внешний вид (см. Патинирование). Перед О. поверхность изделий обезжиривают, подвергают травлению или полированию. Осуществляют О. в стационарных ваннах из низколегированной стали, керамики, фарфора или дерева либо в ваннах с футеровкой из винипласта, фаолита, асбовинила, резины, полиизобутилена и др. Ванны подогревают с помощью змеевиков с паром или водяной рубашки. Для процессов, протекающих при т-ре выше 100° С, раствор нагревают электр. подогревателем и перемешивают механически или сжатым воздухом. Различают О. железа и его сплавов, легких и цветных металлов [c.107]

    Нельзя использовать для нанесения на цинковые и алюми ниевые покрытия масляные и пигментированные свинцовым су риком материалы. Более пригодны для этой цели эпоксидные поливиниловые и некоторые другие лакокрасочные материалы которые хорошо заш ищают металлические покрытия и увеличи вают срок их службы. В последнее время используются металли зационные покрытия сплавом Zn—А1. Хорошие результаты до стигаются при соотношении 70% 2п—30% А1. Такие покрытия характеризуются повышенной коррозионной стойкостью по сравнению с покрытиями из чистого алюминия или цинка. [c.204]


Смотреть страницы где упоминается термин Металлы и сплавы с повышенной коррозионной стойкостью: [c.81]    [c.649]    [c.6]    [c.294]    [c.275]   
Смотреть главы в:

Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 -> Металлы и сплавы с повышенной коррозионной стойкостью




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость

Металлы коррозионное металлов

Металлы сплавы

Сплавы и металлы металлов

Стойкость повышение



© 2024 chem21.info Реклама на сайте