Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сетка с гомогенной структуро

    В зависимости от знака заряда противоиона, вступающего в обмен, различают катиониты и аниониты. Катиониты обменивают катионы, аниониты — анионы. Наибольшее значение имеют органические иониты из синтетических ионообменных смол, образующие структуру пространственной сетки. Сетка полимера, заполненная раствором, является как бы одной гомогенной фазой, в узлах которой закреплены ионы одного знака. Противоионы находятся в растворе внутри сетки и способны обмениваться. Активные группы у катионообменных смол —ЗОзН, — СООН, —ОН, —РО3Н2 и др. Анионообменные смолы содержат аминогруппы. В общем виде ионный обмен на границе ионит—раствор можно выразить уравнением [c.252]


    Широко распространенные термины студень и гель вошли в науку без точного определения, поэтому единства в их толковании трудно требовать. Порой возникающие дискуссии о природе студней (гелей) [43, 44] не имеют особого смысла. Единственно бесспорным может быть утверждение, что они представляют собой системы, потерявшие текучесть. Но природа таких систем может быть весьма разнообразной. Сходными механическими свойствами обладают не только двухфазные конденсационные структуры первого и второго рода, но и вполне гомогенные высокомолекулярные тела, не обладающие текучестью растворы, охлажденные ниже температуры текучести (без разделения на две фазы), набухшие в растворителе пространственные полимеры (молекулярные сетки). Едва [c.326]

    Приведенные данные показывают, что при переходе от сеток с гомогенной структурой к сеткам с гетерогенной структурой возрастает энергия активации элемен- [c.106]

    Гомогенные фитили - сетки, пенистые структуры, войлок, волокна и порошковые материалы. Часто используются фитили, выполненные из сетки и ткани саржевого плетения. Их изготовляют с порами различного размера и из разных материалов, включая коррозионно-стойкую сталь, никель, медь и алюминий. Применяются гомогенные фитили, изготовленные из металлической ваты, в частности войлочные. Изменяя степень сжатия войлока в процессе сборки трубы, можно варьировать размер полученных пор. Используя удаляемые металлические стержни, можно образовать в теле войлока систему артерий. Керамические волокнистые материалы обычно имеют поры малого размера. Основной их недостаток заключается в малой жесткости, вследствие чего они обычно требуют применения несущего каркаса (например, металлической сетки). [c.437]

    Обмен ионов характерен также для высокомолекулярных полиэлектролитов и в первую очередь для ионообменных смол, представляющих собой сплошную пространственную сетку (каркас) полимера, в узлах которой равномерно закреплены ионы одного знака (аналогичные ионам внутренней обкладки) подвижные противоионы находятся в растворе внутри сетки и являются обменными. Сетка полимера, заполненная раствором, рассматривается в настоящее время как одна гомогенная фаза поэтому представления о границе раздела фаз и адсорбции в этих системах теряют физический смысл. Тем не менее законы ионного обмена являются общими для таких полиэлектролитов и для типичных гетерогенных адсорбентов. Поэтому все поглотители, для которых характерен процесс эквивалентного обмена подвижных ионов, в то время, как ионы другого знака закреплены в структуре, носят общее название ионитов. [c.124]


    Гели представляют собой пространственные сетки, образованные либо твердыми коллоидными частицами, либо гибкими макромолекулами, в промежуточных объемах которых находится растворитель. Если гели образуются твердыми коллоидными частицами типа 5102, РегОз,УгОб, то они называются хрупкими гелями. Если пространственная сетка образована макромолекулами ВМС, гели называются эластичными гелями или студнями. Хрупкие гели имеют двухфазную гетерогенную структуру, а эластичные гели (студни) представляют собой гомогенную систему. [c.371]

    Гомогенность истинных растворов высокомолекулярных соединений не нарушается при переходе из вязко-текучего в высокоэластическое состояние, т. е. при появлении дополнительных точечных контактов между цепными макромолекулами, приводящем к образованию молекулярной пространственной сетки. Именно такие гомогенные системы, обладающие некоторыми признаками твердого тела в результате образования молекулярной пространственной сетки, по-видимому, следует называть термином студень . Термин застудневание при этом сохранит обычное значение (превращение жидкого гомогенного раствора в студень при охлаждении). Предложение называть студнями гетерогенные, коллоидные структуры нам представляется неприемлем ш. [c.38]

    Когда происходит гелеобразование, разбавленный или более вязкий раствор полимера переходит в систему бесконечной вязкости, т. е. в гель. Гель может рассматриваться как высокоэластическое, каучукоподобное твердое тело. Раствор, образующий гель, не течет при переворачивании пробирки с ним. Гелеобразование фактически не является процессом фазового разделения и может иметь место и в гомогенных системах, содержащих полимер и растворитель. Многие полимеры, используемые как мембранные материалы, проявляют гелеобразующие свойства, например, ацетат целлюлозы, полифениленоксид, полиакрилонитрил, полиметилметакрилат, поливинилхлорид и поливиниловый спирт. Физическое гелеобразование может протекать по различным механизмам в зависимости от типа полимера и используемого растворителя или смеси растворитель/нерастворитель. Особенно в случае частично-кристаллических полимеров гелеобразование часто инициируется образованием микрокристаллитов. Эти микрокристаллиты, являющиеся малыми упорядоченными областями, фактически становятся зародышами процесса кристаллизации, но они не способны к дальнейшему росту. Однако если эти микрокристаллы могут связать вместе различные цепи полимера, то будет образовываться трехмерная сетка. Благодаря их кристаллической природе эти гели являются термотропными, т. е. при нагревании кристаллы плавятся и раствор может течь. При охлаждении раствор снова превращается в гель. В процессе гелеобразования часто формируются надмолекулярные структуры (например, спирали). Гелеобразование может также происходить по другому механизму, например при добавлении комплексообразующих ионов (Сг ) или с помощью водородных связей. [c.124]

    Как известно [2], при рН<6 молекулы нейтрализованного силиката полимеризуются со скоростью тем большей, чем выше pH, до размеров примерно 2—3 нм, затем рост резко замедляется, происходит связывание этих частиц в цепочки и сетки без изменения их концентрации в объеме и развивается, таким образом, структура визуально гомогенного геля. При рН=6 и при высокой концентрации электролитов, включая соль, образующуюся при нейтрализации щелочи, происходит скорее осаждение кремнезема, чем гелеобразование. При более высоких pH, вплоть до 10, преобладает процесс коагуляции кремнезема, если ионы щелочного металла не выводятся из раствора, например катионитом. Коагуляция кремнезема происходит под воздействием катионов, особенно многозарядных, и обнаруживается сразу по помутнению раствора из-за образования крупных агрегатов. Иногда, после того как основная масса кремнезема скоагулирует и его концентрация в растворе существенно понизится, образуется непрозрачный гель. [c.108]

    Поскольку вулканизация перекисями протекает по уравнению первого порядка и без индукционного периода, ее скорость максимальна в начале процесса. По мнению Тобольского [25], термически устойчивые углерод-углеродные сшивки необратимо фиксируют конформации макромолекул и обусловливают формирование сетки, характеризующейся внутренними напряжениями. Автор главы полагает, что последние обусловлены отклонениями от равновесных конформаций, которые могут быть вызваны в условиях прессовой вулканизации как тепловыми флуктуациями, так и деформациями макромолекул вследствие вязкого течения при заполнении пресс-формы. Предполагается, что негауссовы цепи подвержены быстрому разрыву даже при малых деформациях. Эти особенности структуры перекисных вулкаиизатов могут являться причиной их низких прочностных свойств. Высказываются и другие точки зрения. В частности, полагают [26], что характер распределения сшивок определяется топохимическими особенностями реакции. В этом случае результатом гомогенной реакции являются более напряженные, а результатом гетерогенной реакции более равновесные сетки. [c.110]


    С. может быть ускорен действием дополнительных напряжений, стремящихся сжать молекулярную сетку студня такие напряжения могут быть приложены, напр., путем центрифугирования. Иногда выделение новой жидкой фазы из метастабильного студня происходит во всем его объеме внутри студня появляются мелкие капельки жидкости (вакуоли), к-рые постепенно разрастаются и могут слиться в сквозные каналы. С. происходит не только в гомогенных метастабильных студнях, но и в неравновесных микро-гетерогенных структурах, образующихся, нанр., при коагуляции коллоидных дисперсий высокомолекулярных веществ или в высокомолекулярных конденсационных структурах, т. е. в пространственных сетках, образующихся при срастании и переплетении частиц новой полимерной фазы, выделившихся из метастабильных р-ров полимеров. [c.440]

    Наиболее резкое снижение т] (от 15-10 до 3-10 Па-с) расплавов отмечается при введении в смесь от 2 до 5% сополимера. При дальнейшем увеличении содержания (до 10%) сополимера ММА—БА в смеси с пММА вязкость расплава изменяется незначительно. Резкое снижение вязкости, по-видимому, можно объяснить переходом системы из гомогенного в гетерогенное — коллоидно-дисперсное состояние. В соответствии с [7] интенсивное снижение вязкости расплавов смесей связано с возникновением особой критической структуры, обладающей пониженным взаимодействием высокодисперсных частиц и сильно развитой поверхностью раздела фаз. Эта структура характеризуется наличием регулярно расположенных ослабленных участков флуктуационной сетки полимера. Можно предположить, что сополимер образует тонкий межфазный слой, распределенный между структурными элементами пММА. Подтверждением того, что вводимый в количестве 2—5%> сополимер ММА — БА находится в коллоидном состоянии, является наличие опалесценции системы. [c.78]

    Коагуляционные структуры возникают в результате выделения из гомогенной системы областей с повышенной концентрацией полимера (ассоциатов) и срастания последних в единую пространственную сетку. По Ребиндеру [405], — это конденсационная структура первого рода. [c.212]

    Таким образом, можно выделить две группы химических процессов, приводящих к вулканизации каучука во-первых, гетерогенные процессы, в результате которых формируется либо гомогенная, либо микрогетерогенная вулканизационная структура во-вторых, гомогенные процессы с участием растворенных в каучуке агентов вулканизации, приводящие к формированию также гомогенной либо микрогетерогенной сетки. [c.247]

    Щихся частиц. Общие представления о возможности диффузии макромолекул при пленкообразовании изложены в работах Марка [39]. Предполагается, что диффузия макромолекул способствует перераспределению эмульгатора, растворению его в полимере, проникновению внутрь частиц или образованию пространственной сетки из эмульгатора, увеличивающей прочностные свойства пленок. При хорошей аутогезии полимера и необходимом количестве эмульгатора, способного растворяться в полимере, получаются гомогенные пленки, не отличающиеся от пленок, полученных из растворов полимера. Последние характеризуются достаточной гидро-фобностью, малой водо- и паропроницаемостью. При большом содержании эмульгатора и плохой его растворимости в полимере пленка состоит из двух взаимопроникающих сеток эмульгатора и полимера. Практически пленки, полученные из латексов, по мнению автора, не характеризуются никогда какой-либо одной из описанные структур. Можно лишь говорить о преобладании структуры одного или другого типа. Из этих представлений вытекает, что структура пленок из дисперсий полимеров отличается от структуры пленок из растворов полимера наличием сетки из эмульгатора. Именно с наличием этой сетки связывают особые свойства пленок из дисперсий полимеров [28, 29], определяемые сеткой, а не структурой полимера. [c.199]

    По методу изготовления и структуре мембраны подразделяют на гомогенные и гетерогенные. Гомогенные мембраны состоят из однородной тонкой пленки ионообменной смолы на поддерживающей сетке из инертного материала. [c.27]

    Основой представлений о твердом растворе является понимание того, что главным типом связи между компонентами древесного вещества является 0-Н О водородная связь. Она образует бесконечную сетку, связывающую в единое целое целлюлозный каркас и лигноуглеводную матрицу клеточных стенок, а также посредством межклеточного вещества обеспечивает формирование структуры растительной ткани. По существу, единственным аргументом, дающим основание оспаривать концепцию твердого раствора явилась работа Эринша и др. [68], где показано, что лигнин и углеводы в твердом состоянии не совместимы. Авторы утверждают, что лигноуглево ная матрица микрогетерогенна. Однако при этом не учитывается, что она образована в основном не лигнином и гемицеллюлозами, а лигноугле-водным блокполимером - ЛУК, который именно потому и образуется, что при формировании клеточной стенки и межклеточного вещества должна быть обеспечена гомогенность лигноуглеводной матрицы. В противном случае она не могла бы выполнять функцию связующего в уникальном по физико-механическим свойствам композите, каковым является древесное вещество. [c.120]

    Первоначальные капиллярные структуры, которые использовались в тепловых трубах, представляли собой такие материалы, как ткань, стекловолокно, пористый металл и проволочная сетка. Эти структуры будем считать гомогенными, чтобы отличать их от комбинаций разлнчн111х материалов, которые будем называть композиционными капиллярными структурами. [c.109]

    Н. удовлетворительными мех. свойствами. Н. высокоуглеродистых (за-эвтектоидных) сталей устраняет це-ментитную сетку, возникающую при медленном охлаждении с т-ры выше Во всех сталях в результате Н. снимаются напряжения, исправляются структурные дефекты (см. Дефекты металлов) после штампования, ковки или прокатки. Часто Н. применяют для общего измельчения структуры перед закалкой. Получающийся при этом более дисперсный эвтектоид облегчает быстрое образование гомогенного аустенита (см. Гомогенная структура) в процессе последующего нагрева под закалку. Если охлаждают на воздухе легированные стали, распад аустенита происходит в температурном интервале ниже перлитного превращения, В результате возникают заметные напряжения и значительно повышается твердость, поэтому такие стали подвергают высокому отпуску при т-ре 550—680° С. Если охлаждение легированных сталей на воздухе приводит к образованию структуры мартенсита, как, напр., в стали марки 18ХНВА, то такой процесс не является нормализацией. Н. применяют чаще, чем отжиг, поскольку она более производительна, может быть осуществлена на меньших производственных площадях с меньшим количеством оборудования (печи используют только для нагрева и выдержки при т-ре нормализации) и рабочей силы. Н. проводят в печах непрерывного и периодического действия, листовую сталь обрабатывают в высокопроизводительных проходных роликовых печах. Для Н. используют также камерные печи с выдвижным подом и колпаковые печи (для толстых листов спец. назначения). По технологии проведения к Н. близка одинарная термическая обработка. В процессе такой обработки сталь нагревают и выдерживают так же, как и при H., а охлаждают в струе воздуха, обеспечивающей повышенную скорость охлаждения структурные превращения происходят в районе изгиба С-кривой изотермического распада аустенита. [c.87]

    Образование сетчатого полимера при О. происходит в гомог. или гетерог. условиях. Гомогенные условия реализуются при О. по механизму поликоиденсации илн полиприсоединення. В этом случае О. подразделяют на две стадии-начальную, до образования непрерывной сетки (геля), и конечную-после гелеобразования до предельных степеней превращения. На конечной стадии О. образуется аморфный густосетчатый полимер. Степень превращ. в начале гелеобразования, кол-во и параметры мол. структуры геля и химически не связанных с ним молекул (золя) рассчитывают статистич. методами с учетом функциональности и соотношения исходных реагентов (см. Функциональность полимеров). С увеличением их функциональности и приближением соотношения к стехиометрическому начало гелеобразования смещается в сторону меньших глубин превращений. [c.424]

    В результате гетерогенной вулканизации в зависимости от характера химических реакций можно получить в принципе не только гетерогенную, но и гомогенную вулканизационную структуру. Улучшение свойств резин в последнем случае объясняется более эффективным нагружением всех цепей сетки вследствие сравнительно узкого распределения их по размерам. Улучшение свойств резин с гетерогенной сеткой связано, кроме того, с эффектом усиления дисперсными частицами — полифунициональными узлами сетки, а также наличием межмолекулярных, сорбционных ( слабых ) вулканизационных связей. Свойства резин с гетерогенной сеткой зависят от числа межфазных химических связей, размера и внутреннего строения частиц дисперсной фазы, степени сшивания эластической среды и молекулярного строения эластомера. [c.129]

    При отверждении смеси олигомеров разной природы (отверждающихся по различным механизмам) или при отверждении олигомера, в к-ром набухла предварительно полученная сетка, четко выраженному разделению фаз даже при термодинамич. несовместимости цепей может препятствовать необратимый характер образующихся узлов сеток, и структура м. б. более гомогенной, чем при отверждении отдельных олигомеров. Образующиеся при этом Т. п. наз. взаимопроникающими (смешанными). [c.328]

    Развивается и альтернативная точка зрения [70]. Полагают, что в сетках с полисульфидными связями формируются гетерогенные вулканизационные структуры размером 3—4 нм, которые в кристаллизующихся каучуках являются также зародышеобразовате-лями. Число последних становится настолько большим, что рост кристаллов сильно задерживается. В перекисных и тиурамных резинах (сетки с моносульфидными и углерод-углеродными поперечными связями) формируется гомогенная вулканизационная структура, число зародышеобразователей невелико, и рост кристаллов проявляется в полной мере. [c.329]

    Матрицей такого ионита является перфторироваиный полимер с ЗОгОН в качестве ионогенных групп. Сульфогруппы задерживают прохождение анионов через мембрану, но не препятствуют движению катионов. Полимер выдерживает нагревание без изменения структуры и свойств до 120° С, стоек в атмосфере хлора. Из него изготовляют гомогенные и армированные тефлоновой сеткой мембраны. Высокая термическая и химическая стойкость обусловила быстрое внедрение мембраны Нафион на многих хлорных заводах за рубежом. Однако недостаточная селективность и электропроводность вызвали большое число работ по совершенствованию мембран такого типа. [c.56]

    Эти структуры отличаются от гомогенных ВПС тем, что в них юпределенным образом меняется состав. Например, вдоль толщины слоя меняется соотношение сетчатых структур 1 и 2. Такие градиентные ВПС могут быть синтезированы при полимеризации мономера, который неоднородно распределен в сетке полимера в результате набухания его в этом мономере. Если эластомерный слой набухает с одной стороны в мономере, образующем жесткий полимер (или наоборот), то возникает демпферная система со структурой градиентной ВПС. Конечно, материал должен наноситься на вибрирующий элемент каучукообразной стороной вниз (рис. 13.11). Применение композиций с градиентным составом обеспечивает расширение рабочего температурного интервала демпфирования [867]. [c.400]

    Рассмотренным выше явлениям может быть дана несколько более конкретная структурная интерпретация. При постепенном переходе от разбавленного раствора в процессе полимеризации полимера в мономере к твердому полимерному телу следует ожидать последовательного возникновения и развития всех характерных форм надмолекулярной структуры. В области Я <Я2< г происходит образование ассоциатов макромолекул. Поскольку, как уже отмечалось, на этой стадии структурообразования (область 9<<7а) в отсутствие структурирующих добавок не наблюдается заметного изменения константы скорости обрыва цепей, надо допустить, что эти ассоциаты в стадии своего образования и накопления имеют флуктуационную природу и их среднее время жизни существенно меньше среднего времени жизни макрорадикала. С ростом глубины превращения число ассоциатов увеличивается и при некоторой критической концентрации полимера (д = да) возникает сплошная структурная сетка. Время жизни ассоциата, включенного в пространственную структурную сетку, оказывается много выше. Поэтому в системе становится возможным захват макрорадикалов структурной сеткой в результате их подстраивания к долгоживущим ассоциатам. Последнее сопровождается резким уменьшением эффективной константы скорости диффузии активных центров, т. е. резким падением константы скорости бимолекулярного обрыва и нарастанием общей скорости полимеризации (гель-эффект). В этой области конверсий, по-видимому, даже обычные радикальные полимеризации, которые принято рассматривать как гомогенные, топохимически весьма сходны с кристаллизацией низкомолекулярного вещества. [c.123]

    В дибор идах NbB 2 и ТаВ 2 атомы бора расположены слоями, которые чередуются со слоями атомов металла, как в структуре типа AlBg. Атомы бора образуют плоские сетки с гексагональными ячейками, как в структуре типа графита, с равноотстоящими атомами бора (расстояния бор—бор равны 1,78 [79]—1,79 [67] А). В дибори-дах обоих металлов наблюдалась значительная область гомогенности. При концентрации бора до 66,7 ат. % структура этих нестехиометрических фаз состоит из недостроенных сеток атомов бора. При концентрации бора выше 66,7 ат. % в центре гексагональных ячеек размещаются дополнительные атомы бора и сетка достраивается. [c.147]

    В разбавленных растворах ассоциированные комплексы имеют простую форму, близкую к шарообразной, с чем связана значительная прозрачность этих растворов (почти полная оптическая гомогенность). При концентрировании, а также при понижении температуры в растворе мыла идет не только общий процесс усиления его коллоидной фракции за счет постепенного исчезновения молекулярной и ионной фракций раствора и образование все более крупных мицелл, но и процесс структурирования ашлло-гичный такому же процессу в растворах ВМС отдельные молекулы и их комплексы все более сцепляются друг с другом в сложные ните- или цепеобразные комплексы, располагающися параллельно друг другу, пока из них не образуется общий каркас (общая сетка) и вся система не превратится в студень или твердое мыло (почти целиком нейтральное). В таком виде мыло утрачивает свою прозрачность и приобретает высокие значения струк-турно-механических характеристик. Ультрамикроскопические и рентгенографические исследования показали, что структура такого мыла-студня приближается к кристаллической. [c.269]

    В воде иониты обладают ионной электропроводностью, которая обусловлена наличием подвижных ионов в ионных атмосферах ионитов. Мембраны, изготовленные из ионообменных смол, также обладают ионной электропроводностью и, находясь во влажном состоянии, ведут себя аналогично водным растворам сильных электролитов, поэтому могут применяться в качестве электролитов ТЭ. В зависимости от типа применяемой для изготовления мембраны смолы различают катионообменные и анионообменные мембраны. В катионитовых мембранах заряды переносятся катионами, в аяиони-товых мембранах — анионами. По методу изготовления и структуре мембраны подразделяются на гомогенные и гетерогенные. Гомогенные мембраны состоят из однородной тонкой пленки ионообменной смолы на поддерживающей сетке из инертного материала. Гетерогенные мембраны представляют собой пленки, состоящие из смеси тонко измельченной ионообменной смолы со связующим инертным материалом,. имеющим высокую химическую стойкость, достаточную механическую прочность и хорошую эластичность. Связ ющими материалами служат каучук и некоторые полимеры. Толщина ионообменных мембран составляет 0,1—1,0 мм. Гомогенные мембраны имеют более высокую электрическую проводимость, но меньшую механическую прочность, чем гетерогенные мем- [c.85]

    В более поздней работе В. А. Каргина п Г. Л. Слонимского предлагается модель структуры резита в виде гомогенного двухкомпонентного застеклованного геля, представляюш его собой пространственную сетку высококонденспрованной составляющ,ей, образованной сравнительно редкими химическими связями и более частыми межмолекулярными, набухшую в смеси полимер-гомологов типа полиметиленфенолов (новолаки). При нагревании такой модели обнаружится суш,ествование Тс, а следовательно п интервала высокоэластичности. По этой модели можно объяснить обратимость большой доли остаточных деформаций при нагревании деформированного образца выше его Тс и зависимость величины модуля упругости образца от величины приложенного напряжения при сжатии. Из этой модели также ясно, что прочностные свойства резитов полностью определяются прочностью связей пространственной сетки, тогда как деформационные их свойства зависят и от вязкостных свойств термопластичной составляюш,ей. [c.150]

    Независимо от того, в результате гомогенной или гетерогенной реакции формируется вулканизационная сетка, обязательным условием вулканизации является соединение практически всех молекул каучука в единую трехмерную сетку. При гомогенной реакции такое сптвание представляется очевидным. Эффективное сшивание макромолекул при гетерогенной реакции с учетом современных представлений об адсорбции полимеров объясняется следующим образом [25, с. 109]. При контакте с поверхностью диснерги-рованной частицы агента вулканизации макромолекула распределяется возле нее в виде деформированного клубка или складчатой структуры так, что адсорбированными оказываются только вершины петель, а сами цепи в основном расположены в каучуковой среде. Вследствие малой площади контакта вероятность взаимодействия каждой молекулы с агентом вулканизации на поверхности дисперсной частицы близка к единице. Рядом на поверхности оказываются вершины нетель (звенья) разных молекул, поэтому сшивание протекает эффективно. Кроме того, при обычных [c.246]

    Попытку построения кинетической модели растущей популяции микроорганизмов предпринял Пиррет [127]. Он также обратился к распределительной модели, в которой популяция отождествлена с открытой системой, где протекают различные реакции метаболизма. Автор сравнил поведение простой линейно открытой системы фиксированного объема, в которой протекают гомогенные мономолекулярные реакции, и открытой системы, где протекают разветвленные последовательные реакции. Было показано, что именно разветвленная кинетическая схема, включающая стадию автокатализа, способная к эндогенному расширению, достаточно строго может описать наблюдаемые феномены роста популяции микроорганизмов. В противоположность Хиншельвуду, связывающему механизм регуляции роста с сорбционными процессами насыщения активных поверхностей биологических структур, Пиррет роль регулятора процесса видит в стадии автокатализа. Вместе с тем сходство обоих кинетических подходов заключается в том, что в основу модели положено представление об экспоненциальном росте, регулируемом через сорбцию или автокатализ. При этом скорость увеличения объема (или массы) рассматривается в любом случае только пропорциональной самому объему (или массе). Б обоих случаях авторы не провели строгой количественной проверки предложенных ими схем, а ограничились хотя и корректным, но лишь качественным рассмотрением поведения системы и объяснением наблюдаемых феноменов. Что же касается строго математического описания системы, то они, естественно, не располагали достаточным фактическим материалом в отношении кинетических характеристик всех отдельных стадий цепи (или сетки) метаболитических реакций, без знания которых проведение расчетов бессмысленно. Однако в этих работах было показано, что использование приемов формальной химической кинетики сложных реакций вполне приемлемо при описании процесса роста популяции в целом. [c.94]

    Из рис. 5.4 видно, что при высоком содержании ПВС в этих системах, как и в присутствии диальдегида, наблюдается резкое нарастание вязкости вплоть до образования студня в 4%-ных растворах ПВС при 20 °С в присутствии 60% ДМФА процесс нарастания вязкости завершается образованием студня через 3 ч, при содержании 65% ДМФА раствор превращается в студень через 50 мин, а при 80%—меньше чем за 10 мин. Образующаяся при этом сетка студня при нагревании распадается. Следовательно, в этом случае гелеобразование не связано с химическим процессом. По мере увеличения концентрации ДМФА в бинарной смеси повышается температура плавления гелей. Гели 4%-ной концентрации в смеси 60 40 плавятся при температуре ниже 50 °С, а в смеси 90 10 не плавятся даже при 80 °С. Гели, образующиеся при самопроизвольном нарастании вязкости ПВС, растворенного в бинарной смеси, являются непрозрачными в отличие от гелей, полученных в присутствии небольших добавок диальдегида, представляющих собой гомогенную прозрачную систему. По мере повышения концентрации ДМФА в бинарной смеси гели становятся более мутными. Гель 4%) НОЙ концентрации в 100%-ном ДМФА совершенно непрозрачен. Это свидетельствует о гетерогенной структуре гелей этого типа. Процесс глобулизации ПВС протекает также в среде безводного ДМФА. Кинетику глобулизации изучали следующим образом ПВС нагревали в безводном ДМФА при 140 °С до полного растворения, затем раствор охлаждали до температуры, при которой исследовали изменение вязкости. На рис. 5.5. приведены данные об изменении вязкости разбавленных растворов ПВС в зависимости от времени при разных температурах. Из рисунка видно, что скорость падения вязкости зависит от температуры. При 80 °С вязкость достигает минимального значения через 3,5 ч, при 70 °С — через 2 ч, при 50 °С — за 40—50 мин, при 30 °С равновесное значение вязкости устанавливается менее чем за 10 мин. Следовательно, при понижении температуры скорость глобулизации повышается. Характер образующихся глобулярных структур также зависит от температуры глобулизации. При 70—90 °С образуются мутные, не меняющиеся при последующем охлаждении глобулярные структуры при быстром охлаждении до [c.229]

    Удельная проводимость гомогенной мембраны зависит от типа смолы, адсорбированных ионов и температуры. Смола ведет себя как концентрированный раствор электролита, в котором движение одного типа иона является ограниченным. Таким образом, в катионитах типа сульфированного полистирола оуль-фогруппы 50з анионы присоадиняются к незащищенной мак-ромолекулярной структуре смолы. Поэтому они не могут мигрировать. Противоионы, в данном случае катионы, могут свободно передвигаться внутри смолы. Наход и Вуд [47] рассматривают катионообменную смолу как анионный поглотитель, заполненный катионами. В анионообменной смоле подвижными являются лишь анионы, а неподвижные катионы составляют сетку смолы. Если к катионитной мембране, находящейся в состоянии равновесия с чистой водой, приложить электрический потенциал, то ток будет проводиться только катионами. Точно так же в анионообменной смоле подвижные анионы создают электропроводность [63]. [c.129]

    В модели Гута и Джемса реальная молекулярная сеть заменена сходной сетью идеализированных гибких цепей, очень неоднородных в деталях, но в среднем гомогенных и изотропных, простирающихся через весь объем модели. В этой модели промежутки между цепями заполпены несжимаемой жидкостью. Благодаря этому внимание ограничивается такими конфигурациями сетки, которые не выходят за пределы постоянного объема. (Прибегая к несколько усложненному доказательству, можно показать, что этот метод воспроизведения объемных свойств молекул пригоден до тех пор, пока сеть имеет рыхлую структуру и не чрезмерно растянута.) Дальнейшие уточнения могут быть введены путем придания жидкости подходящих величин сжимаемости и термического расширения. В равновесных условиях каждая поверхность модели должна, конечно, находиться в равновесии со всеми силами, которые действуют на нее с направленными кнаружи толчками гидростатического давления, с направленными внутрь силами эластичного напряжения сетки и со всякими внешними силами, например с растягивающей, сдвигающей и пр. [c.95]


Смотреть страницы где упоминается термин Сетка с гомогенной структуро: [c.224]    [c.432]    [c.111]    [c.52]    [c.761]    [c.279]    [c.253]    [c.328]    [c.18]    [c.37]    [c.238]    [c.82]   
Процессы структурирования эластомеров (1978) -- [ c.106 , c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Сетки



© 2025 chem21.info Реклама на сайте