Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Группа серина и глицина

    В этом случае при образовании складчатого слоя все боковые группы серина и аланина оказываются по одну сторону слоя, а в другую обращены лишь атомы водорода глицина. В результате слои прилегают друг к другу более тесно — боковые цепи аланина и серина одного слоя встраиваются в промен<утки менаду боковыми цепями аланина и серина соседнего слоя [19]. [c.92]


    Связующим звеном в обмене белков и углеводов при переходе первых во вторые и особенно вторых в первые служит ПВК. Являясь главным конечным продуктом дихотомического распада углеводов, ПВК служит исходным веществом для биосинтеза аланина, валина и лейцина. При ее карбоксилировании образуется щавелевоуксусная кислота, из которой строится новая группа аминокислот—аспарагиновая кислота, треонин, метионин, изолейцин и лизин. Вступая в цикл трикарбоновых и дикарбоновых кислот, ПВК используется для биосинтеза а-кетоглутаровой кислоты, из которой образуются глутаминовая кислота, пролин и аргинин. Предшественник ПВК—3-фосфоглицериновая кислота—является исходным соединением для синтеза серина, глицина, цистина и цистеина. [c.470]

    Ориентация карбоксильной группы, таким образом, определяется здесь структурой связывающего центра [301]. Это демонстрирует также важную роль витаминов, поскольку избыток глицина и серина в системе может оказывать токсичное действие, если витамин Вб присутствует в недостаточном количестве. [c.440]

    В результате двух реакций сложноэфирной конденсации ацильные группы производных СоА переносятся на шиффовы основания глицина или серина. Сукцинил-СоА служит донором ацильного остатка в биосинтезе б-аминолевулиновой кислоты, промежуточного соединения в синтезе гемов (гл. 14, разд. Е, 4)  [c.218]

    В антипараллельных, прилегающих одна к другой полипептидных цепях преобладает повторяющаяся последовательность -01у-8ег-01у-А1а-01у-А1а-. Цепи образуют антипараллельную /3-структуру, стабилизированную оптимальным образованием водородных связей между СО- и ЫН-группами. Прн этом остатки глицина выступают с одной, а серина и аланина — с другой стороны складчатого листа. Расстояния между отдельными листами равны примерно 0,35 и 0,57 нм. [c.422]

    Поставщиками одноуглеродных групп могут быть некоторые вещества за счет своих отдельных атомов углерода, как это доказано путем применения меченых атомов. К ним относятся муравьиная кислота [302], уксусная кислота [5], глицин [302], серин (Р-оксиаланин), холин, метионин [304], пировиноградная кислота и др. [c.497]

    В следующей работе о происхождении метоксильных групп в биосинтезе лигнина Бьеррум с сотрудниками (98] вводили в растения табака меченые соединения глицин-1-С глицин-2-С серин-З-С формальдегид-С . Они нашли, что около 90% радиоактивности лигнина приходилось на углерод метоксилов после введения последних трех соединений, тогда как лишь 2—3% присутствовало в метоксилах после введения первого соединения. Когда соединения вводили на эквимолекулярной основе, се-рин-З-С поступал в лигнин в наибольшем количестве второе место занимал формальдегид-С и третье — глицин-2-С .  [c.774]


    Для образования серина из глицина необходимо добавление оксиметильной группы. Опыты по подкормке растений показали, что в реакциях переноса одноуглеродных остатков используются муравьиная кислота и а-углеродный атом гликолевой кислоты. Широко распространено мнение, что муравьиная кислота образуется из гликолевой кислоты путем следующих реакций  [c.414]

    В состав этого биополимера (гликопептида) входят аланин (В- и Ь-), Х)-глутаминовая кислота, Х-серин, глицин, а, е-диаминопиме-линовая кислота, -лизин и др. Наличие в этом биополимере аминокислот с двумя аминными группами и их предшественников (орнитин, лизин, а, е-диаминопимелиновая кислота и др.) важно, так как они могут формировать еш е дополнительные связи с пептидами с помощ ью пептидной связи, образуя более сложный полимер. [c.11]

    Поскольку ДФФ не является полным структурным аналогом нормальных субстратов этих ферментов, опасность присоединения метки не к активному центру, а к каким-то другим участкам молекулы фермента в этом случае, естественно, больше, нежели в случаях описанных выше. Однако скорость, стехиометрия и специфичность реакции присоединения ДФФ явно указывают, что метка действительно попадает в активный центр. Известно, например, что ДФФ специфически фосфорилирует один из двух остатков серина в химотрипсине. Химотрипсин может быть помечен и многими другими аналогичными агентами, в том числе и-нитрофенилацетатом, причем в каждом случае аципируется одна и та же гидроксильная группа серина, тогда как никакие другие группы не ацилируются. Во многих (хотя и не во всех) исследованных эстеразах и протеиназах ДФФ фосфорилирует гидроксильную группу только того серина, с К-концом которого связан либо аланин, либо глицин. Данные, характеризующие окружение реакционноспособного серина в некоторых белках, приведены в табл. 29. Из таблицы видно, что даже ферменты, сильно различающиеся по своей специфичности, могут иметь одинаковую последовательность аминокислот в участках, примыкающих к остатку серина, содержащему реакционноспособную гидроксильную группу. Это позволяет думать, что специфичность фермента и его способность ката- [c.198]

    Обработка семян вики НЭМ и ЭИ, не меняя общих закономерностей в содержании всех семейств аминокислот, приводила к значительным отклонениям в их содержании. Так, НЭМ влияла на обмен аминокислот группы нирувата во все периоды роста, повышая общее их содержание, и практически не сказывалась на обмене аминокислот семейства серина. В действии ЭИ наблюдалась несколько иная картина. Обработка ЭИ семян вики влияла на содержание аминокислот группы серина от начала опыта и вплоть до 67-го дня после посева, то есть в изменении соотношения скоростей обмена 3-фосфооксипирувата и аминокислот серина, цистеина и глицина. [c.94]

    Некоторым витаминам принадлежит особо важная роль в азотистом обмене. Подвергаясь в организме фосфорилированию, а в некоторых случаях более сложным превращениям, они дают начало образованию небелковых компонентов ферментов, катализирующих реакции превращения аминокислот. Витамин Ва (флавин) является составной частью кофермента оксидазы О- и .-аминокислот и аминооксидаз. Пантотеновая кислота входит в состав кофермента ацилирования, играющего важную роль в обмене безазотистых соединений, образующихся из аминокислот (а-кетокислот и др.) и ряда азотистых веществ. Фолиевая кислота и ее производные участвуют в процессах, приводящих к использованию метильных групп метионина, формильных, оксиметильных групп (остатков муравьиной кислоты и формальдегида), возникающих при превращении ряда аминокислот (серина, глицина, гистидина, триптофана). Особо важное место в азотистом обмене занимает витамин В( (пиридоксаль). В виде своего фосфорного эфира Вд служит коферментом ряда ферментов, участвующих в превращениях аминокислот. В частности, ферменты, катализирующие переаминирование аминокислот, содержат в виде кофермента пиридоксальфосфат. Авитаминоз В сопровождается, особенно у микроорганизмов, ослаблением и даже прекращением реакций переаминирования. Пиридоксальфосфат является также коферментом декарбоксилаз аминокислот. Вместе с этим тшридоксальфосфат входит (в виде кофермента) в состав ряда других ферментов, участвующих в превращениях определенных аминокислот (триптофана, серина, серусодержащих аминокислот). [c.433]

    Серии служит также основным источником глицина (стадия г) и одноуглеродных остатков, используемых для синтеза метильных и фор-мильных групп. Основной путь образования глицина из серина [70] — это реакция, катализируемая сериноксиметилазой (стадия г, рис. 4-12) в меньшей степени превращение идет через образование фосфатидил-серина, фосфатидилхолина и свободного холина [уравнение (14-30)]. Вследствие ограниченной способности нашего организма к синтезу метильных групп холин во многих случаях должен обязательно поступать в организм с пищей, в связи с чем его причисляют к витаминам. Однако в присутствии достаточных количеств фолиевой кислоты и витамина В12 организм уже не испытывает абсолютной потребности в холине. Холин может быть использован непосредственно для превращения обратно в фосфатидилхолин (рис. 12-8), но его избыток может подвергаться дегидрированию в бетаин [уравнение (14-30)]. Последнее соединение, содержащее четвертичный атом азота, является одним из немногих метаболитов, которые, подобно метионину, могут поставлять метильные [c.118]


    ТЕРМОЛИЗИН, фермент класса гидролаз, катализирующий гидролиз пептидных связей, образованных гл. обр. остатками гидрофобных аминокислот (изолейцином, лейцином, валииом, фенилаланином, метионином, аланином). Со значительно меньшими скоростями катализирует гидролиз связей, образованных остатками тирозина, глицина, треонина и серина. Не способен расщеплять пептидные связи, образованные с участием остатка пролина. Т. также катализирует р-цию транспептидирования (образование поперечных сшивок путем взаимод. концевой группы NHj пентаглицинового остатка молекулы с пептидной связью между концевыми остатками D-аланина др. фрагмента молекулы-гл. обр. в протеогликанах), не катализирует гидролиз амидов и эфиров карбоновых к-т. [c.542]

    Также как синтетические полипептиды, а-белки могут быть переведены в р-форму. Это достигается растяжением, иногда в специальных условиях. Рентгенограммы р-белков показывают, что их молекулярные цепи принимают при растяжении вытянутую конфигурацию. Водородные связи -в р-белках также, как в синтетических/полипептидах, направлены перпендикулярно оси волокна. р-Форма белков нестабильна и после удаления растягивающего усилия, как правило, вновь восстанавливается а-спиральная конфигурация цепей. Только один белок,— фиброин шелка в естественном состоянии существует в виде р-формы. Образование Р- Конфигурации цепей в фиброине шелка происходит в тот момент, когда шелковичный червь прядет шелковую нить. Образующиеся при этом большие силы давления развертывают молекулярные цепи белка. Стабильность образовавшейся р-конфигурации в нити фиброина шелка объясняется тем, что на отдельных фрагментах молекул этого белка скапливаются остатки с короткими боиовыми цепями — глицин, аланин, серин. Отталкивание боковых групп этих остатков во много раз меньше отталкивания больших боковых цепей других аминокислот. Поэтому Р-структуры, возникающие на отдельных фрагментах цепей фиброина шелка (в местах скоплений остатков с короткими боковым и дшями), оказываются относительно стабильными. Это подтверждается изучением р-структур синтетических полипептидов с короткими боковыми цепями, таких, как поли-(глицил- аланин). [c.543]

    Знакомство со структурой аминокислот лучше всего начать с глицина, аланина, серина, аспарагиновой кислоты и глутаминовой кислоты. Отметим, что структуру многих аминокислот можно получить из структуры аланина заменой одного из атомов водорода на другую группу. Так, замена р-водорода аланина дает  [c.84]

    Во время переноса одноуглеродных остатков в структуре кофермента - те-трагидрофолиевой кислоты (ТГФ) - происходит образование мостика между атомом азота в пятом положении птеридина и азотом иара-аминобензойной кислоты (на рис. 14 не показан) за счет переносимого фрагмента. Последний затем включается в синтезирующееся пуриновое кольцо или в виде группы СН3 входит в состав тимина при синтезе пиримидиновых оснований. Кроме того, ТГФ участвует в реакциях биосинтеза аминокислот, а именно в превращении серина в глицин и в переносе метильной группы при биосинтезе метионина. [c.39]

    Перечислите исходные вещества, необходимые для синтеза в каждом случае, и приведите полную последовательность реакций для одного примера из каждой группы. Задача 37.11. При взаимодействии ацетальдегида со смесью K N и NH4 I (синтез Штрек-кера) образуется соединение aHgNj (какова его структура ), которое при гидролизе дает аланин. Покажите, как синтез Штреккера можно применить для синтеза глицина, лейцина, изолейцина, валина и серина (в качестве исходного вещества используйте С2Н5ОСН2СН2ОН). Все необходимые при этом карбонильные соединения необходимо получить из легко доступных веществ. [c.1045]

    Следует обратить особое имание на то, что триплеты, кодирующие одну и ту же аминомслоту, в большинстве случаев различаются только по третьему нуклеотидному остатку. Лишь в тех случаях, когда аминокислота имеет более четырех кодонов, различия в кодонах затрагивают также первое и второе положения в триплете. Если вся группа четырех кодонов, различающихся только по третьему нуклеотиду, кодирует одну и ту же аминокислоту, то можно говорить о семье кодонов. Как видно из рис. 3, имеется восемь таких семей кодонов —для лейцина, валина, серина, пролина, треонина, аланина, аргинина и глицина. [c.16]

    Следует отметить, что в выяснение биологической роли витамина В и пиридоксальфосфата в азотистом обмене существенный вклад внесли А.Е. Браунштейн, С.Р. Мардашев, Э. Снелл, Д. Мецлер, А. Майстер и др. Известно более 20 пиридоксалевых ферментов, катализирующих ключевые реакции азотистого метаболизма во всех живых организмах. Так доказано, что пиридоксальфосфат является простетической группой аминотрансфераз, катализирующих обратимый перенос аминогруппы (КН,-группы) от аминокислот на а-кетокислоту, и декарбоксилаз аминокислот, осуществляющих необратимое отщепление СО от карбоксильной группы аминокислот с образованием биогенных аминов. Установлена коферментная роль пиридоксальфосфата в ферментативных реакциях неокислительного дезаминирования серина и треонина, окисления триптофана, кинуренина, превращения серосодержащих аминокислот, взаимопревращения серина и глицина (см. главу 12), а также в синтезе б-аминолевулиновой кислоты, являющейся предшественником молекулы гема гемоглобина, и др. [c.227]

    Что касается аминокислот, входящих в состав гликопротеинов, то последние представлены чаще всего во всем их разнообразии, хотя можно отметить несколько интересных особенностей. Так, содержание ароматических и серусодержащих аминокислот обычно очень невелико. Отмече-но , что все известные гликопротеины по аминокислотному составу могут быть разделены на две довольно определенные группы. Гликопротеины одной группы, содержащие небольшой процент сахаров и близко стоящие к белкам, имеют обычный стандартный набор аминокислот к этой группе относятся гликопротеины плазмы и многие другие углеводсодержащие белки. Гликопротеины второй группы содержат относительно меньше аминокислот, но состав этих аминокислот более специфичен наиболее характерным признаком этой группы гликопротеинов является очень высокая доля оксиаминокислот (серина и треонина), которые в отдельных случаях, например в групповых веществах крови, составляют половину всех аминокислот аномально высоким бывает также содержание пролина и глицина.  [c.568]

    Однако при оценке этих данных следует учитывать, что значительная часть серина, тирозина и аспарагина разлагается в процессе кислотного гидролиза, а триптофан разрушается полностью. По той же причине не следует переоценивать превалирующего значения глутаминовой кислоты, глицина и лейцина, относящихся к группе более стойких аминокислот [15]. Состав аминокислотных смесей несколько изменяется в зависимости от взятых исходных фракциц. [c.73]

    Известно, что следующие аминокислоты выделяют аммиак при облучении [36, 39—42] аланин, аргинин, аспарагин, аспарагиновая кислота, а-аминоизомасляная кислота, цистин, глутаминовая кислота, глицин, гистидин, лейцин, лизин, метионин, фенилаланин, серин, тирозин и валин. Цистеин [4-3] не способен к дезаминированию, вероятно, нз-за преобладающей реакции тиоловой группы (см. ниже). Пролин не образует аммиака [36]. Глицилглицин образует несколько больше аммиака на единицу дозы облучения, чем глицин, а его хлорид — значительно меньше [44]. Возможно, что дезаминирование может происходить как за счет амидной группы, так и за счет свободной аминогруппы в полипептидной цепи оно вызовет разрыв самой цепи. Предложен [36] следующий механизм для реакций дезаминирования свободной аминогруппы [c.220]

    Эти аминокислоты (рис. 5-6) лучше растворяются в воде, т. е. они более гидрофильны, чем неполярные аминокислоты, так как их функциональные группы образуют водородные связи с молекулами воды. В этот класс аминокислот входят глицин, серин, треонин, цистеин, тирозин, аспарагин и глутамин. Полярность серина, треонина и тирозина обусловлена их гидроксильными группами, полярность аспарагина и глутамина-их амидными группами, а полярность цистеина-его сульфгидриль-ной, или тиоловой, группой. К-группа [c.115]

    Каждая из 20 аминокислот, которые обьино обнаруживают как продукты гидролиза белков, содержит -карбоксильную группу, а-аминогруппу и специфическую для данной аминокислоты -группу, замещающую водород при а-атоме углерода. а-Атом углерода во всех аминокислотах (за исключением глицина) является асимметрическим, и, следовательно, каждая из этих аминокислот может существовать по меньшей мере в двух стереоизомерных формах. В белках встречаются только Ь-стереои-зомеры, соответствующие по своей конфигурации Ь-глицеральдегиду. Классификация аминокислот основана на различиях в полярности их К-групп. К классу неполярных аминокислот принадлежат аланин, лейцин, изолейцин, валин, пролин, фенилаланин, триптофан и метио-ний. В класс полярных нейтральных аминокислот входят глицин, серин, треонин, цистеин, тирозин, аспарагин и глутамин. Класс отрицательно заряженных (кислых) аминокислот включает аспарагиновую и глутаминовую кислоты, а класс положительно заряженных (ос-нбвных) аминокислот-аргинин, лизин и гистидин. [c.132]

    Поскольку серин является предшественником глицина, пути биосинтеза этих двух аминокислот мы рассмотрим здесь вместе. Главный путь образования серина в тканях животных (рис. 22-6) начинается с 3-фосфоглицерата, представляющего собой промежуточный продукт гликолиза. На первом этапе а-ги-дроксильная группа 3-фосфоглицерата окисляется за счет NAD с образованием 3-фосфогидроксипирувата. Последний вступает в реакцию трансаминирова- [c.658]


Смотреть страницы где упоминается термин Группа серина и глицина: [c.422]    [c.70]    [c.411]    [c.256]    [c.217]    [c.223]    [c.351]    [c.423]    [c.40]    [c.351]    [c.96]    [c.588]    [c.151]    [c.121]    [c.316]    [c.517]    [c.499]    [c.392]    [c.124]    [c.588]    [c.269]    [c.293]    [c.577]    [c.597]   
Смотреть главы в:

Биохимия растений -> Группа серина и глицина




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глициния

Серин

Серини



© 2024 chem21.info Реклама на сайте