Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм разделения в ионообменной хроматографии

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]


    Сорбенты. Разделение веществ при ТСХ обычно протекает по смешанному механизму, поэтому для успешного решения аналитической задачи очень важен правильный выбор сорбента и элюирующей системы растворителей. При этом следует исходить из химического строения разделяемых соединений. Для неполярных веществ следует применять сорбент с большой адсорбционной способностью. Разделение полярных соединений лучше производить жидкость-жидкостной хроматографией, ионогенных — ионообменной хроматографией. В общем, выбор условий разделения в ТСХ аналогичен другим видам хроматографии. [c.357]

    Основная цель применения ионообменной хроматографии для многочисленных задач технологии и анализа состоит в разделении смесей и поглощении отдельных компонентов их. Естественно, что и теория ионообменной хроматографии должна основываться на рассмотрении одновременного процесса обмена всех компонентов смеси. Однако до настоящего времени при расчетах как по статике, так и по динамике ионного обмена обычно исходят из законов статики обмена индивидуальных ионов. Степень такого приближения не всегда обоснована. Упрощенный подход объясняется в основном тем, что расчет реальных систем, представляющих собой смеси ионов, связан с громоздкими математическими вычислениями, которые для задач статики сводятся к решению систем нелинейных алгебраических уравнений, а для задач динамики— к решению систем нелинейных дифференциальных уравнений с частными производными. Многочисленные работы по статике обмена индивидуальных ионов свидетельствуют о том, что даже в этой сравнительно более простой области исследования окончательно не решены вопросы о механизме обмена и, следовательно, о количественных закономерностях, которым подчиняется обмен. [c.12]

    ХРОМАТОГРАФИЯ — метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Хроматографические сорбционные, методы различаются по следующим. признакам по средам, в которых производится разделение (газовая, газожидкостная, жидкостная X.) по механизмам разделения (молекулярная, ионообменная, осадочная и распределительная X.) по технике проведения разделения (колоночная, капиллярная, бумажная и тонкослойная X.), Методами X. анализируют смеси неорганических соединеиий, концентрируют следы элементов. В химической т хнологии X. применяют для очистки и разделения различных веществ, близких по свойствам лантаноидов, актиноидов, аминокислот и др. [c.280]


    Эта классификация основана на характере сил, действующих между растворенными веществами и твердой или жидкими фазами, с которыми они соприкасаются. На практике обычно разделение веществ протекает по смешанным механизмам. Адсорбционная хроматография сопровождается распределительной при ТСХ на слабоактивных сорбентах в элюентах, содержащих воду. Распределительная и ионообменная хроматография могут сопровождаться адсорбционной. На разделение по адсорбционному механизму может оказывать влияние структура пор адсорбента [c.341]

    Различают газовую, газоадсорбционную, жидкостную, жидкостную распределительную и другие виды хроматографии. Эти различия определяются по признакам, характеризующим или среду, в которой осуществляется разделение, или механизм разделения (молекулярный, ионообменный и т. д.), или форму проведения процесса—бумажная, капиллярная, тонкослойная и т. д. [c.196]

    Одной из наиболее важных областей применения ионного обмена является ионообменная хроматография — разделение сложной смеси электролитов в разбавленном растворе. Хроматофафическую колонку заполняют ионитами — ионообменными сорбентами минерального происхождения (силикаты, алюмосиликаты) или синтетическими полимерными органическими сорбентами (полистирольными, фенолформальдегидными катионитами или аминоформальдегидными и полиаминовыми анионитами). Наиболее распространенным является взгляд на механизм ионного обмена как гетерогенную химическую реакцию двойного обмена [4]  [c.167]

    Хроматографические методы можпо различать по условиям проведения разделения газовый и жидкостный по механизмам разделения молекулярно-адсорбционный, ионообменный, распределительный. Существенное значение имеет форма проведения процесса и способ неремещення смеси вдоль сорбента. Перемещение смеси можно осуществить в проявительном режиме, когда вещество-носитель практически не сорбируется. Этот метод обычно используется в газовой хроматографии. Перемещение смеси может быть во фронтальном режиме, нри котором происходит последовательное выделение сначала наименее сорбируемого компонента. Распространен и вытеснительный режим, при котором исходная [c.288]

    Хроматографические методы классифицируют по нескольким параметрам а) по механизму разделения компонентов анализируемой смеси (адсорбционная, распределительная, ионообменная, осадочная и др.) б) по агрегатному состоянию подвижной фазы (газовая, жидкостная) в) по типу стационарной фазы и ее геометрическому расположению (колоночная, тонкослойная, хроматография на бумаге) г) по способу перемещения разделяемой смеси в колонке (элюентная, фронтальная, вытеснительная). [c.107]

    По механизмам разделения хроматографию подразделяют на адсорбционную (газовую или жидкостную), осадочную, ионообменную, распределительную, гель-фильтрационную (гель-хроматографию) и био- [c.101]

    Для ионообменной хроматографии характерны два общих подхода при выборе условий разделения. В простейшем случае рассматриваются различия в прочности сорбции ионов, определяемых величиной заряда и их радиусом в соответствии с рядами селективности (см. п. 3.2.2). Для последовательного элюирования по этому механизму в элюентном режиме в качестве элюента выбирается рас- [c.202]

    Различные варианты хроматографии классифицируют по нескольким признакам 1) по агрегатному состоянию подвижных фаз — жидкостная и газовая. В свою очередь газовая хроматография может быть разделена по агрегатному состоянию неподвижной фазы — на газотвердую и газожидкостную 2) по механизму разделения— ионообменная, адсорбционная, распределительная, осадочная 3) по способу проведения процесса или аппаратурного оформления— колоночная, капиллярная, плоскостная (бумажная и тонкослойная). [c.195]

    Ионообменная хроматография — очень распространенный метод, особенно широко применяющийся для разделения редких земель и аминокислот. Термин ионообменная хроматография показывает, что процесс состоит во взаимном разделении ионов, способных обмениваться со смолой. Отделение друг от друга различных катионов основано на различии в константах обмена если подобрать соответствующие условия, эти различия можно использовать для количественного разделения. Аналогичным образом можно использовать для взаимного разделения различных анионов и анионообменные смолы. При хроматографических разделениях желательно пользоваться растворителем, в котором проявляется только один какой-нибудь механизм сорбции как правило, ионообменные смолы хорошо приспособлены к этому требованию. [c.77]

    При кажущейся простоте схемы противоточного способа осуществления хроматографического процесса его практическая реализация требует сложных технических решений для осуществления взаимного перемещения фаз во встречных направлениях и непрерывного выделения из их потоков целевых компонентов. Целый ряд попыток создания противоточных хроматографических устройств для газовой и ионообменной хроматографии закончился неудачей из-за технических трудностей. К тому же в подавляющем большинстве случаев их преодоление не оправдано достигаемым конечным эффектом разделения исходной смеси веществ только на две фракции. Неожиданным техническим решением проблемы осуществления противоточного хроматографического процесса яви.пась противоточная центрифужная хроматография ounter urrent entrifugal hromatography (ССС), которая по смыслу механизма разделения может называться в русскоязычной литературе ЖЖХ в поле центробежных сил. Этот вариант хроматографического процесса был впервые реализован в системе двух жидких фаз. И до сих пор ЖЖХ в поле центробежных сил остается основным направлением развития этого метода. В этом методе, в отличие от традиционных направлений ЖЖХ, не требуется носитель стационарной фазы. Диспергирование стационарной фазы и ее удержи- [c.189]


    По механизму разделения смесей выделяют адсорбционную, ионообменную, распределительную, осадочную, лигандообменную хроматографию. Иногда выделяют окислительно-восстановительную, адсорбционно-комплексообразовательную хроматографию и др. [c.418]

    Поскольку в данной главе рассматриваются в основном липофильные вешества в неводных растворах, то мы не будем особо останавливаться на методике хроматографии на бумаге (или ее более современного аналога, использующего стекла, покрытые целлюлозой), для нормальной и обращенной распределительной, ионообменной, ситовой хроматографии, а также на разделении неорганических ионов. Достаточно сказать, что описанные аппаратура и методика в общем применимы во всех методах хроматографии в тонком слое, которые различаются только механизмом разделения. Мы не намеревались дать обзор всех работ в этой области (см. список дополнительной литературы). Вместо этого мы опишем методику адсорбционной хроматографии в тонком слое, широко используемую в лаборатории авторов с 1961 г., и обсудим ее некоторые усовершенствования. [c.133]

    Механизм разделения в ионообменной хроматографии [c.167]

    В настоящее время используют различные методы и варианты хроматографии. Так, в зависимости от механизма разделения разработаны методы молекулярной, распределительной, ионообменной и осадочной хроматографии по форме проведения процесса различают методы колоночной, капиллярной, тонкослойной и бумажной хроматографии. [c.63]

    Хроматография — зто метод разделения смесей нескольких компонентов, основанный на различии коэффициентов распределения компонентов смеси между подвижной и неподвижной фазами. В ионообменной хроматографии в качестве неподвижной фазы используются вещества, способные к обмену ионов. Поглощение растворенных веществ твердой фазой является результатом меж-фазных ионообменных реакций В других видах хроматографии (с исключением иона, с обменом лигандов, высаливающая и растворяющая) в качестве неподвижной фазы также используются ионообменные смолы, однако обмен между фазами происходит не по механизму ионообменных реакций. [c.117]

    Очень часто нужно решать задачи, связанные с разделением сульфонатов лигнина. Эти вещества могут выделяться в чистом виде из сульфитного щелока (отработанного) посредством обработки его трихлоридом гексамминкобальта и превращением его в бариевые соли на ионообменной колонке [41]. Используя сефадекс 0-75 и 0-100, можно получить фракции с молекулярными массами вплоть до 100 000. Механизм разделения лигно-сульфонатов кальция и лития с помощью гель-хроматографии был исследован на колонке, наполненной сефадексом 0-25 и 0-50, при использовании в качестве элюента воды, смеси диок-сан—вода и водных растворов хлоридов кальция и лития [42]. [c.57]

    Хроматографические методы классифицируются по различным признакам. По механизму разделения, т. е. по особенности взаимодействия разделяемых компонентов со стационарной фазой, различают адсорбционную и "распределительную ионообменную, осадочную и другие виды хроматографии.  [c.46]

    При смешанном механизме удерживания для веществ разного строения и молекулярной массы можно оценить вклад в удерживание адсорбционного, распределительного, эксклюзионного и других механизмов. Однако для лучшего понимания и представления о механизмах разделения в ВЭЖХ целесообразно рассматривать разделения с преобладанием того или иного механизма как относящиеся к определенному виду хроматографии, например, к ионообменной хроматографии. [c.15]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]

    Все перечисленные изомеры мононуклеотидов хорошо известны. Смесь 2 - и З -фосфатов образуется при гидролизе рибонуклеиновых кислот наилучшим с препаративной точки зрения является щелочной гидролиз. Как будет подробно рассмотрено ниже, образование смеси 2 - и З -фос-фатов является следствием механизма гидролиза нуклеиновых кислот, и поэтому принципиально невозможно направить этот процесс таким образом, чтобы получить только 2 - или только З -замещенные изомеры. Эти изомеры с чрезвычайной легкостью переходят один в другой, и их разделение стало возможным лишь в последнее время в связи с развитием техники ионообменной хроматографии. [c.215]

    Хроматографические методы классифицируют по следующи признакам I) по агрегатному состоянию смеси, в которо проводят ее разделение на компоненты,— газовая, жидкостнг и газо-жидкостная хроматография 2) по механизму разделения -адсорбционная распределительная, ионообменная, осадочная, ок1 слительно-восстановительная, адсорбционно-комплексообразов тельная хроматография 3) по форме проведения хроматограф ческого процесса—колоночная, капиллярная, плоскостная (бума>1 ная, тонкослойная и мембранная). [c.330]

    Хроматография — метод разделения смесей, основанный на избирательном распределении их компонентов между двумя фазами, одна из которых (подвижная) движется относительно другой (неподвижной). Основное достоинство хроматографических методов заключается в разнообразии механизмов разделения. Это может быть адсорбция, распределение между двумя жидкими или жидкой и газовой фазами, ионный обмен, гель-фильтрация, комплексообразование, образование малорастворимых соединений и др. Соответственно различают адсорбционную (газовая и жидкостная), распределительную (газожидкостная хроматография, экстракционная хроматография, распределительная хроматография на бумаге), ионообменную, гель-проникающую (эксклюзион-ная), комплексообразовательную (адсорбционная, лигандо-обмеиная, хроматография на хелатных сорбентах), осадочную хроматографию. Возможны и другие методы. Дополняя друг друга, хроматографические методы позволяют решать широкий круг аналитических задач. Этим объясняется ведущее место хроматографии среди методов разделения, имеющихся в арсенале современной аналитической химии. [c.77]

    Наиболее важным методом, используемым для хроматографии кислот, является ионообменная хроматография. Это обусловлено главным образом присутствием карбоксильной группы, ионогенные свойства которой позволяют разделять кислоты на основе различных механизмов ионного обмена. Удерживание анионов органических кислот на анионообменных смолах зависит от их кислотности. Это обстоятельство используется при хроматографическом разделении органических кислот на анионообменных смолах в гидроксильной, карбонатной, формиатной, ацетатной и хлоридной формах. Для элюирования использовали воду, разбавленную муравьиную, уксусную и соляную кислоты или их буферные растворы. Разделение двух кислот тем эффективнее, чем больше разница в их константах диссоциации. Разделение двух слабых кислот происходит наиболее четко в том случае, когда pH элюата на V2 ниже величины /zipKi + pKz), где / l и /Сг — константы диссоциации этих разделяемых кислот [2]. Эффективность разделения можно увеличить, если применять смеси растворителей. Из колонок, наполненных анионооб-менной смолой, органические кислоты элюируются быстрее смесью метанол—вода, чем чистой водой [3]. [c.151]

    Классическую ионообменную хроматографию по описанному вьиие механизму проводят в водных средах. И соответственно широкое распространение она получила для разделения различных природных, лекар-ственньк и других веществ, ионизирующихся в водных растворах. Теория и техника классической ИОХ подробно описаны в литературе [3, 4]. [c.90]

    Смешанные механизмы удерживания. Обсуждая выше условия ионообменной хроматографии, мы полагали, что механизмы удерживания, отличные от процесса ионного обмена, не играют существенной роли. Например, при выводе уравнений (3.78)— (3.82) мы предполож или, что в неподвижной фазе отсутствуют другие формы хроматографируемого компонента, такие, например, как протонированная форма аниона (ИХ). На практике это предположение не всегда является корректным. По этой причине различные неподвижные фазы с одинаковыми функциональными группами могут иметь различную селективность. Например, в работе [67] показаны различия в селективности при разделении нуклеотидов на двух различных сильных анионообмен- [c.110]


Смотреть страницы где упоминается термин Механизм разделения в ионообменной хроматографии: [c.276]    [c.5]    [c.668]    [c.368]    [c.7]    [c.28]    [c.54]    [c.95]    [c.181]    [c.71]    [c.7]    [c.7]    [c.213]    [c.668]    [c.84]   
Смотреть главы в:

Экологическая аналитическая химия -> Механизм разделения в ионообменной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Ионообменная хроматографи

Разделение в ионообменной хроматографи

Хроматография ионообменная

Хроматография разделение



© 2025 chem21.info Реклама на сайте