Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение в ионообменной хроматографи

    Электрохимическое разделение путем осаждения металла, окиси или соли на поверхности электрода а) электролиз на ртутном катоде б) внутренний электролиз Хроматографическое разделение— ионообменная хроматография на катионите или анионите [c.279]

    Смесь пептидов, образующихся в результате использования различны> методов расщепления, сначала должна быть разделена, и каждый из пептидов очищен. Целевой компонент перед анализом последовательности должен быть гомогенен по данным как минимум четырех различных методов разделения ионообменной хроматографии, электрофореза, бумажной или тонкослойной хроматографии и противоточного распределения. [c.366]


    Разделение ионообменной хроматографией натрия, калия, магния и кальция, содержащихся в молоке [1382]. [c.284]

    На основе исследования химизма основных методов разделения природных смесей р. 3. э. и, в частности, роли комплексообразования в этих процессах, а также изучения способов моделирования масштабов процессов, например хроматографических [38, 39], при участии авторов были разработаны и внедрены технологические способы получения индивидуальных р.з.э. высокой чистоты, частично опубликованные в литературе [11—14, 40— 53]. В основу таких технологических схем было положено сочетание различных методов разделения на первых этапах — методов большой производительности со сравнительно невысокими степенями разделения (деление на подгруппы, основное осаждение, кристаллизация), на последних этапах— методы меньшей производительности, но с высокими степенями разделения (ионообменная хроматография, выделение элементов с переменной валентностью). Промежуточное положение занимают экстракционные процессы, которые в зависимости от масштабов производства могут быть использованы на первых или последних стадиях технологии. [c.291]

    Разделение ионообменной хроматографией. Ниобий и тантал можно разделить ионообменной хроматографией раствора фторидных комплексов этих элементов, содержащего соляную и плавиковую кислоты. [c.926]

    Современные методы разделения — ионообменная хроматография и экстракция органическими растворителями — позволяют получать соединения р.з.э. в достаточно чистом виде. Однако нет хорошего метода выделения металлов -из их солей. В настоящее время для получения р.з.э. их соли восстанавливают активными металлами или подвергают электролизу. Полученные таким образом р.з.э. содержат до 1 % примесей других редкоземельных и посторонних элементов. [c.110]

    Как проводится разделение ионов методами адсорбционной и осадочной хроматографии В чем сущность ионообменной хроматографии Как она применяется в количественном анализе  [c.160]

    Ионообменная хроматография — сорбционный динамический метод разделения смесей ионов на сорбентах, называемых ионо-обменниками. При пропускании анализируемого раствора электролита через ионообменник в результате гетерогенной химической реакции происходит обратимый стехиометрический эквивалентный обмен ионов раствора на ионы того же знака, входящие в состав ионообменника. Ионообменный цикл состоит из стадии поглощения ионов (сорбции) ионообменником (неподвижной фазой) и стадии извлечения ионов (десорбции) из ионообменника раствором, который проходит через сорбент (подвижная фаза или элюент). Разделение ионов обусловлено их различным сродством к ионообменнику и происходит за счет различия скоростей перемещения компонентов по колонке в соответствии с их значениями коэффициентов распределения. [c.223]


    Основные направления аналитического и технологического использования ионообменной хроматографии следующие 1) разделение близких по свойствам элементов с применением комплексообразующих реагентов (например, редкоземельных и трансурановых элементов) 2) удаление мешающих ионов 3)концентрирование ценных микроэлементов из природных и промышленных вод 4) количественное определение суммарного содержания солей в растворах 5) деминерализация воды 6) получение кислот, оснований, солей извлечение редких и рассеянных элементов (урана, золота, серебра, германия и др.). [c.225]

    Разделение ионов Ti и Zr" методом ионообменной хроматографии основано на различии в сорбции указанных ионов катионообменником КУ-2 в 1 М растворе НС1. При этом ионы сорбируются катионообменником, а ионы Ti полностью вымываются из колонки. Ионы Zr десорбируются из колонки [c.233]

    Кроме колоночной хроматографии, широко реализуемой в разнообразных вариантах, получила распространение и плоскостная хроматография, особенно ее разновидность — бумажная хроматография. Она выполняется на специальной хроматографической бумаге, обладающей изотропностью по всем направлениям, равномерной плотностью и толщиной. На такую бумагу можно нанести осадитель или вещество с ионообменными свойствами, и тогда ее можно использовать для осадительной или ионообменной хроматографии. Хроматографическая бумага весьма гигроскопична, в ее порах и капиллярах при нормальных условиях удерживается более 20% влаги. Процесс разделения на такой бумаге напоминает распределительную хроматографию, в которой неподвижной фазой является вода. Процесс проводят в замкнутом сосуде с растворителем. На бумагу наносят разделяемую смесь и один край листа опускают в растворитель. Под действием капиллярных сил растворитель движется вдоль листа и захватывает разделяемые вещества, скорость переноса которых зависит от их коэффициентов [c.182]

    В 1947 г. Т. Б. Гапон, Е. Н. Гапон и Ф. М. Шемякин впервые осуществили хроматографическое разделение смеси ионов в растворе, объяснив его наличием обменной реакции между ионами сорбента и ионами, содержащимися в растворе. Так было открыто еще одно направление хроматографии — ионообменная хроматография, [c.10]

    При ионообменной хроматографии взаимодействующими веществами являются ионы твердой фазы и раствора. Разделение смеси ионов, находящихся в растворе, основывается на степени ионного сродства этих ионов к твердой фазе. Твердой фазой в этом случае должно быть вещество, способное обмениваться своими ионами и потому называемое ионообменником или ионитом. Анализируемая смесь может быть только в растворе. [c.12]

    Отношение коэффициентов распределения двух ионов, разделяемых в одинаковых условиях, называется коэффициентом разделения, который характеризует способность данного ионита к разделению смеси двух различных ионов в растворе. Если коэффициент разделения равен единице, то разделение смеси ионов невозможно. Таким образом, в ионообменной хроматографии необходимо выбирать иониты с достаточно высоким коэффициентом разделения по отношению к анализируемым ионам. [c.105]

    Проявительный метод является наиболее распространенным методом ионообменной хроматографии. Рассмотрим разделение смесн ионов В+, С+ и 0+ на ионите с противоионом А+, предположив, что по способности к обмену ионы располагаются в ряд А+<В+<С+< <0+ [c.109]

    Вытеснительный метод в ионообменной хроматографии применяется шире, чем в адсорбционной. Анализируемую смесь подают в колонку в виде отдельной пробы, а затем производят вытеснение раствором такого электролита, ион которого обладает наибольшим сродством к выбранному иониту и вытесняет его противоион. В хроматографическом фильтрате ионы появляются в той последовательности, в которой они располагаются в сорбционном ряду, причем все фракции вытесняемых ионов содержат и противоион. Последним появляется ион-вытеснитель. Естественно, в реальных условиях всегда образуются переходные пограничные зоны, содержащие два соседних иона ион предыдущей зоны и ион следующей зоны. Размеры пограничных зон тем меньше, чем правильнее выбраны условия хроматографического разделения. [c.110]

    Применение комплексообразователей в ионообменной хроматографии позволило решить очень важную задачу разделения и выделения в чистом виде редкоземельных элементов и их смесей. [c.111]

    По природе сорбента различают адсорбционную, распределительную (абсорбционную) и ионообменную хроматографии. В случае адсорбционной хроматографии сорбция происходит на поверхности твердого тела — адсорбента. В распределительной хроматографии компоненты абсорбируются жидкостью, нанесенной на твердый носитель. В ионообменной хроматографии сорбентом являются ионообменные смолы — полиэлектролиты, содержащие основные (—ЫНз —ЫН— —М=) или кислотные (—ЗОдН —СООН —5Н) группы, и процесс разделения основан на обратимом ионном обмене между ионообменной смолой и компонентами смеси. Ионообменная хроматография существует только в жидкостном варианте. [c.46]


    Молекулярная адсорбционная хроматография. Этот вид хроматографии имеет большое значение для аналитического и технологического разделения смесей органических веществ сложного состава, например растительных пигментов, витаминов, антибиотиков, аминокислот. Известны также примеры использования метода молекулярной адсорбционной хроматографии для разделения редкоземельных и радиоактивных элементов, хотя для этих целей чаще применяют методы ионообменной хроматографии. [c.69]

    Вымывание широко применяется также в ионообменной хроматографии. Как видно из приведенного выше описания, метод требует часто довольно много времени для разделения компонентов, однако затраты труда здесь невелики. Необходимо иметь также в виду широкие возможности автоматизации этого процесса. Промывая водой и измеряя электропроводность фильтрата, получают зависимость, аналогичную той, которая показана на рис. 10 (на оси абсцисс отложена электропроводность). Таким образом, контроль за ходом процесса может осуществляться на расстоянии, что особенно важно, например, при работе с радиоактивными веществами. Кроме того, прибор, отмечающий электропроводность, может передать сигнал на реле с тем, чтобы после извлечения первого компонента переключить поток жидкости во второй сосуд. [c.69]

    Разделение ионов. Методом элюентного анализа можно разделять ионы, используя их различную способность к полному обмену. Поскольку методика работы такая же, как в методе хроматографического разделения, этот метод называют ионообменной хроматографией. [c.250]

    Ионообменная хроматография. С ее помощью можно отделять мешающие определению элементы или, наоборот, определяемые элементы при прохождении анализируемого раствора через ионообменную колонку. Если определяемый элемент затем выделить в небольшой объем растворителя, можно сконцентрировать следовые количества элемента до легко измеримых концентраций, и поэтому такой способ концентрирования приобретает все большее значение при анализе следовых количеств элементов. Четкость разделения элементов, сорбируемых ионообменной смолой, можно увеличить, применяя при элюировании комплексообразующие реагенты. Особенно эффективным вариантом метода является нспользование комплексообразующих ионообменных смол. Эти смолы содержат активные группы, способные к образованию специфичных комплексов с определяемыми ионами, которые задерживаются смолой. При этом происходит эффективное разделение. [c.421]

    Ионообменная хроматография служит для разделения ионов и основана на различной способности разных ионов в растворе к обмену с ионитом (ионообменником), служащим неподвижной фазой. Обычно синтетический ионообменник представляет собой высокополимер (смолу), например поперечно-сшитый полистирол, содержащий различные функциональные фуппы. Для разделения катионов используют катиониты, анионов - аниониты. [c.294]

    Кроме ионообменной хроматографии, для разделения и анализа катионов и анионов советские ученые Е. Н, Гапон и Т, Б. Гапон [c.9]

    Кроме ионообменной хроматографии, для разделения и анализа катионов и анионов советские ученые Е. Н. Гапон и Т. Б. Га-пон в 1948 г. предложили осадочную хроматографию. В этом варианте метода Цвета формирование хроматограмм обусловлено не различием адсорбируемости или коэффициентов распределения, а процессом образования осадков и различием в их растворимости. Это и вызывает разделение тех ионов, которые вошли в состав осадков при реакции с реактивом-осадителем, нанесенным на сорбент хроматографической колонки или на фильтровальную бумагу. [c.9]

    Для разделения смесей веществ в тонком слое применяют как адсорбционную, так и распределительную и ионообменную хроматографии. [c.71]

    Сорбенты. Разделение веществ при ТСХ обычно протекает по смешанному механизму, поэтому для успешного решения аналитической задачи очень важен правильный выбор сорбента и элюирующей системы растворителей. При этом следует исходить из химического строения разделяемых соединений. Для неполярных веществ следует применять сорбент с большой адсорбционной способностью. Разделение полярных соединений лучше производить жидкость-жидкостной хроматографией, ионогенных — ионообменной хроматографией. В общем, выбор условий разделения в ТСХ аналогичен другим видам хроматографии. [c.357]

    При ионообменной хроматографии распределение происходит в результате ионного обмена (см. 8.5) между неподвижным ионитом и перемещающимся относительно него раствором разделяемых веществ. Последние должны иметь заряд. В качестве примера можно привести разделение аминокислот на катионитах. Такое разделение широко используется в биохимии, когда необходимо определить, из каких аминокислот состоит какой-либо белок и в каком отношении находятся в нем эти аминокислоты. Кипячением с соляной кислотой белок разрушается до аминокислот, и полученная смесь наносится на катионит. Устанавливается ионообменное равновесие [c.339]

    Имеется несколько видов хроматографического анализа. Наибольшее значение для аналитических целей получила ионообменная хроматография, применяемая для разделения катионов и анионов и для концентрирования разбавленных растворов и т. д. [c.194]

    Ионообменная хроматография имеет много преимуществ по сравнению с химическими методами анализа. Этот метод значительно упрощает многие аналитические операции, требующие длительного времени разделения, и отличается большой степенью точности. [c.194]

    Тонкослойная хроматография АК на тонком слое катионообменни-ка, позволяет разделить АК в буфере pH 3,3 по величине заряда АК. В этом случае принцип разделения - ионообменная хроматография (ИОХ). Разделение АК методом ИОХ осуществляют на колонках, а анализ смеси АК проводят в специальных приборах - анализаторах АК. [c.18]

    Из биологич. материала У. к. могут быть выделены их адсорбцией на угле, очисткой и разделением ионообменной хроматографией. Синтетически У. к. могут быть получены фосфорилпрованием уридина ферментативным или химич. путем (см. Нуклеотиды)-, УМФ-2 и УМФ-3 получают щелочным гидролизом рибонуклеиновой к-ты. [c.182]

    Проба 30 пикомолей, взятых из природного образца хроматограф фирмы Varian Aerograph моде/.и L S-1000 с ультрафиолетовым детектором шкала самописца соответствует 0,02 ед. оптической плотности способ разделения — ионообменная хроматография колонка длиной 300 см, внутренним диаметром 1 мм заполнена вердыми инертными частицами, покрытыми тонкой пленкой анионообменной смолы температура колонки 80 °С подвижная фаза — 0,01 М раствор НС1, pH 2,1 скорость потока 10 мл/ч Вавление перед колонкой 24 ат 15]. [c.207]

    Проба 200 мкл хроматограф фирмы Varian Aerograph модели L S-1010 с ультрафиолетовым детектором шкала самописца соответствует 0,64 ед. оптической плотности способ разделения — ионообменная хроматография колонка длиной 100 см, внутренним диаметром 20 мм заполнена сорбентом типа аменекс А-27 зернением 12 — 15 мкм подвижная фаза—раствор ацетата натрия, концентрация которого изменяется линейно во времени от 0,015 М до 6,0 М скорость потока через колонку 8 мл/ч, через градиентную систему — 4 мл/ч давление перед колонкой 36 — 12 ат. [c.231]

    Разделение катионов Fe + и u + методом ионообменной хроматографии основано на способности этих ионов в аммиачной среде в присутствии сульфосалициловой кислоты образовывать комплексные ионы противоположного знака —анионы трисуль-фосалицилаты Fe + и катионы аммиаката Си +. [c.230]

    В настоящее время появились наиболее полные методы, сочетающие разделение мальтенов с учетом их химической природы и размеров комбинации ионообменной хроматографии с гель-фильтрованием. По-видимому, очередность применения хроматографии и гель-фильтрования не имеет значения. Например, из остаточных нефтяных фракций ионообменной хроматографией выделены кислые и основные фракции [249] и найдено, что в природных асфальтах, промышленных остаточных фракциях и окисленном битуме содержание основных компонентов выше, чем кислых. Основные фракции имеют азот- и серусодержащнх компонентов в 2—3 раза больше, чем кислородсодержащих. Содержание углерода в кислых фракциях более, а в остальных менее 80 %. В содержании водорода не наблюдается закономерностей. [c.104]

    Классификация на основе природы элементарного акта. Если неподвижной фазой является твердое вещество, то элементарным актом взаимодействия анализируемого вещества (сорбата ) с твердой фазой (сорбентом) может быть 1) акт адсорбции— адсорбционная молекулярная хроматография 2) обмен ионов, содержащихся в твердой фазе, на ионы из раствора — ионообменная хроматография 3) химическое взаимодействие с образованием труднорастворимого осадка — осадочная хроматография. При адсорбционной молекулярной хроматографии жидких или газообразных веществ хроматографическое разделение основывается на различии адсорбционного сродства между компонентами разделяемой смеси и веществом твердой фазы, называемым в данном случае адсорбентом. Этот вариант хроматографии относится к классическому цветовскому варианту. [c.12]

    В ионообменной хроматографии чаще всего используют элю-ентный вариант разделения, иногда — вытеснительный. Улучшить разделение катионов можно путем введения в элюирующий раствор комплексантов, образующих комплексные соединения с катионами — компонентами разделяемой смеси и тем самым повышающих селективность. Добавление в элюент невод- [c.321]

    Как показывает название, в основе адсорбционной хроматографии лежит адсорбция разделяемых веи еств на твердой поверхности выбранного адсорбента. Адсорбция обусловлена или физическими ван-дер-ваальсовыми силами межмолекулярного взаимодействия в системе адсорбат—адсорбент (молекулярная хроматография), или силами химического сродства, действующими, например, в процессе реакции при обмене ионов разделяемых компонентов на поверхностные ионы применяемого ионообменного адсорбента (ионообменная хроматография). В обоих случаях главным условием для осуществления разделения должно быть различие энергии адсорбции разделяемых веществ, что равносильно различию коэффициентов адсорбции. [c.11]

    Разделение ионов Ti и Zr методом ионообменной хроматографии основано на различии в сорбции указанных ионов катионообменником КУ-2 в 1 М растворе НС1. При этом ионы Zт сорбируются катионообменником, а ионы Ti полностью-вымываются из колонки. Ионы Zr десорбируются из колонки A M раствором НС1. Количественное определение указанных ионов фотометрическим методом основано на образовании хелатов Ti с хромотроповой кислотой при рН = 2—3 красного цвета (Ямакс = 470 нм), ионов Zr с арсеназо I при рН=1 синего-цвета (Я, акс = 580 нм). [c.233]

    Ионообменная хроматография основана на явлении обмена ионов между набухщим ионитом и раствором. Ионообменное разделение смеси ионов определяется различием их зарядов, а также ионной силой раствора. Внутри зерен ионита разделение зависит еще от скорости диффузии ионов, которая определяется плотностью ионита (частотой сщивок). [c.359]

    Сущность ионообменной хроматографии кратко заключается в следующем. Раствор смеси компонентов, предназначенный для анализа, пропускают через ионообменную колонку,заполненную ионообменни-ком. В результате взаимодействия ионов веществ с ионами, входящими в состав ионообменннка, происходит разделение веществ. [c.194]


Смотреть страницы где упоминается термин Разделение в ионообменной хроматографи: [c.238]    [c.221]    [c.100]    [c.13]    [c.67]    [c.221]   
Современное состояние жидкостной хроматографии (1974) -- [ c.222 ]

Современное состояние жидкостной хроматографии (1974) -- [ c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Алимарин и А. М. Медведева. Разделение ниобия и титана методом ионообменной хроматографии

Альдиты разделение методом распределительной хроматографии на ионообменных смолах

Б Оглавление Ионообменная хроматография в радиохимии Преображенский Принципы ионообменных разделений

Белявская и Э. П. Шкробот. Разделение трех- и шестивалентного хрома методом ионообменной хроматографии

Ионообменная хроматографи

Ионообменная хроматография разделение

Ионообменная хроматография, разделение по заряду

Коршунов, А. И. Субботина и В. И. Гнездов. Разделение железа и кобальта методом ионообменной хроматографии

Механизм разделения в ионообменной хроматографии

Разделение аминокислот методом ионообменной хроматографии

Разделение и обнаружение смеси катионов всех аналитических групп методом ионообменной хроматографии

Разделение методом ионообменной хроматографии

Разделение по заряду хроматография на ионообменных носителях и гидроксиапатите

Разделение смеси ПАВ методом ионообменной хроматографии и их идентификация

Разделение элементов методом ионообменной хроматографии

Рекомендации по практическому применению метода элютивной ионообменной хроматографии для разделения смесей, вытекающие из теории тарелок

Сорочан, В. Б. Арефьев, М. М. Сенявин. Послойный метод расчета на ЭВМ разделения смесей металлов методом ионообменной хроматографии

Хроматография ионообменная

Хроматография разделение

Электролиты, разделение методом ионообменной жидкостной хроматографии



© 2024 chem21.info Реклама на сайте