Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристика автоматических систем регулирования

Рис. Х1-7. Окончательная блок-схема системы автоматического регулирования работы испарителя (получена в результате изучения частотных характеристик процесса) Рис. Х1-7. Окончательная <a href="/info/50684">блок-схема</a> <a href="/info/65490">системы автоматического регулирования</a> работы испарителя (<a href="/info/290578">получена</a> в результате <a href="/info/136589">изучения частотных характеристик</a> процесса)

    Задачи динамики гидро- и пневмосистем состоят в математическом описании процессов в этих системах, исследовании устойчивости и качества регулирования систем, синтезе корректирующих устройств, обеспечивающих оптимальные или заданные характеристики систем. Приведенные задачи являются общими для любых систем автоматического управления и регулирования, но в динамике гидро- и пневмосистем имеются особенности, обусловленные взаимодействием гидравлических и пневматических элементов, а также наличием движения рабочей среды (жидкости или газа) по трубопроводам, щелям и каналам с местными сопротивлениями. Кроме процессов, возникающих при выполнении системами запланированных операций в гидро- и пневмосистемах, имеют место колебания давлений, расходов, отдельных деталей вследствие сжимаемости рабочей среды, воздействия рабочей среды на регулирующие устройства, утечек по зазорам и других причин. Сочетание всех этих явлений приводит к сложным нестационарным гидромеханическим процессам, которые необходимо учитывать при проектироБании и создании гидро- или пневмосистем. Следует напомнить о том, что понятия система , гидро-или пневмосистема относятся не только к комплексам взаимосвязанных устройств, но могут быть применены и к устройствам, представляющим собой соединения более простых элементов. Именно с позиций такого системного подхода рассматриваются ниже гидро- и пневмосистемы, в число которых включены гидромеханические и пневмомеханические приводы с дроссельным регулированием, электрогидравлические и электропневматические следящие приводы с дроссельным регулированием, гидроприводы с объемным регулированием, гидро- и пневмосистемы с автоматическими регуляторами. [c.238]

    Зная механизм распространения волн концентрации дисперсной фазы, мы можем исследовать переходные процессы в затопленном колонном аппарате, которые связаны с поведением дисперсного потока. Отметим, однако, что дисперсный поток в аппарате не существует сам по себе . Для его организации и поддержания в пределах рабочей зоны аппарата необходима более или менее сложная система автоматического регулирования уровней поверхностей раздела фаз, которая в общем случае может оказывать существенное влияние на динамические характеристики аппарата. Исследование переходных процессов в такой системе выходит за рамки проблем, рассматриваемых в данной работе. Читателям, интересующимся этим вопросом, следует обратиться к специальной литературе [176]. [c.119]

    При соединении элементов в систему статическая характеристика последней будет в значительной мере зависеть от свойств этих элементов. Так, наличие в системе статического или изодром-ного (астатического) регулятора проявляется в различии статических характеристик всей системы автоматического регулирования (см. рис. 1.5, б). [c.28]


    В предыдущих главах рассматривались линейные модели систем автоматического регулирования и управления. Такие модели получаются в результате линеаризации уравнений, описывающих различные физические процессы в устройствах, входящих в систему. Если при линеаризации характерные черты физических явлений сохраняются, то благодаря развитой теории линейных дифференциальных уравнений имеется возможность сравнительно просто решать задачи устойчивости и качества регулирования, причем, как было показано, разработанные в теории автоматического регулирования и управления методы позволяют проводить не только анализ, но и синтез линейных систем. Однако не всегда допустима указанная идеализация реальных систем, так как при замене нелинейных уравнений линейными может не только уменьшиться точность расчетов процессов регулирования, но и исказиться или даже исчезнуть качественные особенности процессов, возникающих в нелинейных системах. Последнее связано с наличием в системе элементов с существенно нелинейными характеристиками, к которым относят характеристики, не линеаризуемые при переходе к малым отклонениям переменных. Многие существенные нелинейности, встречающиеся в системах автоматического регулирования и управления, могут быть представлены кусочно-линейными характеристиками. [c.168]

    Для надежной работы системы регулирования концентрации большое значение имеет правильный выбор регулирующих органов. При этом следует иметь в виду, что многие регулирующие органы дроссе-льного типа не только изменяют со временем свою рабочую характеристику, но вообще засоляются настолько, что не обеспечивают длительной непрерывной работы выпарного аппарата. Естественно, что система автоматического регулирования, имеющая в своем составе дроссельные регулирующие органы в обычном исполнении, достаточно быстро оказывается неработоспособной. [c.210]

    Как уже известно, передача на тепловозе обеспечивает требуемый вид тяговой характеристики при неизменном режиме работы дизеля. Задачей системы регулирования энергетической цепи является такая трансформация характеристик элементов передачи, при которой выполняется это условие. Тяговый электродвигатель как звено, непосредственно связанное с движущими осями, имеет электромеханические характеристики М = / (/) и п =ф (/), момент вращения на валу и частоту вращения вала в зависимости от тока его нагрузки, которые воспроизводит тяговая характеристика. Характеристики должны иметь вид, удовлетворяющий изложенному выше условию. Приведение этих характеристик к требуемому виду и является задачей автоматического регулирования. В качестве сигналов должны быть использованы координаты выхода энергетической цепи, т. е. физические величины, изменяющиеся с изменением ее нагрузки. [c.8]

    Критерий В. М. Попова, приводимый здесь без доказательства, состоит в следующем. Для абсолютной устойчивости положения равновесия нелинейной системы автоматического регулирования, состоящей из нелинейного звена с характеристикой Р (и), удовлетворяющей условиям (6.58), и устойчивой линейной частью с передаточной функцией Wa (з), достаточно, чтобы при к > О существовало такое вещественное число что для всех со О выполнялось неравенство [c.202]

    С развитием и совершенствованием систем автоматического регулирования и управления определился еще один признак классификации, по которому системы разделяют на жесткие (неприспосабливающиеся) и адаптивные (приспосабливающиеся). К жестким системам относятся системы автоматического регулирования и управления, свойства которых в процессе эксплуатации не претерпевают контролируемых изменений. Адаптивные системы характеризуются тем, что в них в зависимости от внешних условий происходят контролируемые изменения свойств регулятора или управляющей-системы. Этой особенностью объясняется и название таких систем, аналогичное соответствующему понятию в биологии и означающее приспособление растения или животного к изменившимся внешним условиям. Адаптивные системы делят на экстремальные, самонастраивающиеся, самоорганизующиеся и самообучающиеся, в которых по различным показателям осуществляется корректирование характеристик регулятора (управляющей части) или изменение его структуры [1 ]. [c.17]

    При обработке сжимаемых жидкостей на динамическую характеристику системы регулирования давления и потока влияет гидравлическая емкость технологических аппаратов и масса жидкости в трубопроводах. Гидравлическая емкость аппаратов и труб в конечном счете определяет характеристику замкнутой системы регулирования. Взаимодействие гидравлической емкости и массы в некоторых объектах может привести к явлению резонанса, которое нельзя устранить при помощи автоматических регуляторов. [c.139]

    Таким образом, алгоритм управления процессом, как правило, включает следующие основные блоки (см. рис. 2) блок математической модели, блок подстройки коэффициентов модели, блок оптимизации . В общем работу алгоритма можно описать следующим образом. Через определенные промежутки времени производится подстройка коэффициентов модели (это делается либо периодически, либо после того, как несоответствие модели и характеристик процесса реальным параметрам превысит некоторый заданный предел). После определения коэффициентов при помощи блока оптимизации, реализующего тот или иной метод расчета оптимальных режимов, находятся оптимальные значения управляющих переменных, которые затем передаются в качестве заданий на локальные системы автоматического регулирования. Эти значения управляющих переменных сохраняются до тех пор, пока оптимальный режим не нарушится. Надо отметить, что иногда вычислительная машина управляет непосредственно процессом, но такие случаи редки ввиду недостаточной надежности существующих машин. [c.20]


    Регулируемые гидромуфты могут также выполнять функции ограничивающих и разгонных гидромуфт. Для этого система регулирования снабжается автоматическим устройством, которое при запуске и -перегрузке двигателя предельно снижает характеристику гидромуфты. При этом возможно получение сколь угодно [c.323]

    В то же время необходимо отметить, что успешное применение потокового хроматографа в качестве датчика состава системы автоматического регулирования может быть достигнуто только при правильном применении его в системах регулирования (согласовании характеристик хроматографа и объекта) и правильном выборе точки отбора пробы. Решение этих вопросов зависит от характеристик технологического объекта, состояния разделяемых смесей, требований, предъявляемых к анализируемым продуктам. [c.172]

    Свойства автоматизированной энергетической установки наиболее полно можно охарактеризовать ее параметрической надежностью. Параметрической надежностью (параметрическая вероятность безотказной работы) называется вероятность функционирования системы (элемента) с заданным значением выходного параметра, практически обычно — нахождение выходного параметра в зоне допуска. Для автоматической системы максимально возможная параметрическая надежность является наиболее универсальной характеристикой, которая отражает структуру схемы, качество регулирования, качество настройки и регулировки системы, с ней тесно связаны такие экономические показатели, как эффективность установки и расход энергии. [c.228]

    Представляет интерес исследование системы регулирования уровня в области комплексного переменного s. В этой области временная характеристика разомкнутой системы, описываемая уравнением (И, 26), может быть представлена таким образом, что 5=—1/xog. будет полюсом характеристики. Для замкнутой системы автоматического регулирования с постоянной времени [c.89]

    Электроды сравнения. Контроль основного параметра защиты — защитного потенциала осуществляется с помощью стационарных и подвесных электродов сравнения. Они также служат датчиками потенциала в автоматических системах катодной защиты. Известны различные по природе и техническим характеристикам электроды сравнения, однако общими требованиями к ним являются стабильность потенциала во времени и при изменении внешних факторов для регулирования и поддержания с заданной точностью необходимого защитного потенциала металлоконструкций. [c.74]

    На современных тепловозах широко используются автоматические системы управления. Для проектирования и исследования электрического оборудования тепловоза необходимо знать основы автоматики и принципы автоматического регулирования и управления [14,25]. Естественные статические характеристики звеньев энергетической цепи не соответствуют требованиям тяги. Следовательно, необходимо изменять параметры энергетической цепи или ее выходные координаты таким образом, чтобы их взаимосвязь и взаимодействие обеспечивали требуемую тяговую характеристику локомотива = /(и). Подлежат регулированию и вспомогательные агрегаты тепловоза. Элементы энергетической цепи, вспомогательные агрегаты локомотива нуждаются в автоматической защите. [c.6]

    Б работе основное внимание уделено реализации на элементах аналоговой вычислительной машины нелинейных характеристик элементов систем автоматического регулирования. Приведены упражнения, которые помогут выяснить, как влияют нелинейные характеристики звеньев системы на качество регулирования. Рассмотрен случай, когда нелинейным звеном является объект регулирования. [c.281]

    Таким образом, наиболее общим случаем автоматизации промышленных холодильных установок является система автоматического регулирования. Системы сигнализации, программного управления и защиты могут рассматриваться как частные случаи системы регулирования по устройству и характеристикам составные элементы этих систем аналогичны или близки. [c.6]

    Ввиду важности количественной характеристики качества псевдоожижения — параметра б, как для исследований структуры кипящего слоя, так и для ее регулирования в производственных условиях, необходимо было автоматизировать процесс ее измерения. Простейшим и наиболее удобным в лабораторных условиях явилась непосредственная подача вырабатываемого емкостным зондом переменного напряжения U (), пропорционального плотности р (/), в интегрирующие блоки аналоговой ЭВМ. Использованная нами схема такой системы, содержащей фильтр верхних частот, набранный на операционных усилителях ЭВМ, приведена в [1 ]. Разработанные в дальнейшем различными группами исследователей [108] электронные схемы с применением аналоговых или цифровых ЭВМ или в виде специально сконструированных приборов, позволяют в настоящее время измерять значения р и б практически непрерывно и использовать этот метод для контроля и автоматического регулирования качества псевдоожижения. [c.88]

    Переходная характеристика является реакцией системы на воздействие ступенчатой формы или другого изменения состояния системы, прикладываемого к ней в виде возмущения. Подвергаясь действию такого возмущения, почти все химические процессы при работе без систем автоматического регулирования имеют монотонный характер переходного процесса Они оказываются либо устойчивыми (рис. УП1-2, кривая /), либо неустойчивыми, когда, подвергнутые однократному возмущению, они непрерывно отклоняются от заданного положения (рис. УП1-2, кривая 2) до тех пор, пока не встретится другое ограничивающее воздействие. [c.99]

    Основное требование, которому должна удовлетворять любая система автоматического регулирования или управления, заключается в обеспечении заданного для регулируемого или управляемого объекта режима. Вследствие возмущающих воздействий или изменения задающего воздействия на систему автоматического регулирования или управления в какие-то моменты времени нарушается установившийся режим работы системы. При восстановлении заданного состояния или при смене состояний в системе возникают переходные процессы, сопровождающиеся изменением регулируемых величин во времени. Эти изменения при правильной работе регулятора (управляющей системы) должны находиться в допустимых пределах. Кроме того, ограничивается продолжительность процессов регулирования. Однако вследствие несоответствия характеристик регулятора (управляющей системы) и регулируемого объекта или управляемого объекта предъявляемые к системе требования могут не выполняться. Возможны также случаи, когда система автоматического регулиро- вания или управления оказывается неустойчивой. В такой системе после любого случайного возмущения возникают либо незатухающие колебания, либо колебания с нарастающей во времени амплитудой, либо отклонение регулируемой величины монотонно нарастает во времени. [c.22]

    Каждый канал представляет собой импульсную систему автоматического регулирования. Длительность импульса и период повторения настраивают в зависимости от характеристик системы, в частности в зависимости от частоты возмущений. Регулятор последовательно подключается к работающим фильтрам и постепенно (через несколько циклов) выравнивает их производительность. Система обе-чания должна предусматривать проскок фильтров, находящихся в режимах резерв , регенерация , дистанционное управление . [c.283]

    Степень автоматизации адсорбционных установок различна от использования локальных регуляторов невзаимосвязанных параметров до управляющих вычислительных машин, т. е. работы проводятся до заранее намеченного уровня без предварительного обоснования экономической эффективности работы на этом уровне. Известны и отдельные попытки применения прямого цифрового управления, однако реализация этого направления сдерживается высокими требованиями, предъявляемыми к надежности и другим характеристикам управляющих вычислительных машин. Поэтому наиболее распространенной является каскадная система управления, состоящая из двух подсистем. Старшая подсистема осуществляет функции оптимизации процессов при помощи управляющих вычислительных машин, а младшая подсистема поддерживает заданные оптимальные значения управляющих режимных параметров при помощи автоматических регуляторов. При определенных условиях применение систем автоматического управления может оказаться эффективнее применения систем автоматического управления с использованием УВМ, поэтому вопрос о реализации старшей подсистемы может быть решен только после сравнения ожидаемого экономического эффекта от применения системы автоматической оптимизации и системы регулирования при заданных настройках регуляторов с экономическим эффектом, установленным по результатам оптимизационных расчетов [69]. Для определения [c.183]

    Автоматическое регулирование основных технологических переменных с целью поддержания этих переменных па значениях, соответствующих регламенту процесса и их автоматического изменения на заданные величины. Требования к качеству САР удовлетворяются посредством оптимальной настройки регуляторов по динамическим характеристикам соответствующих каналов объекта управления. В системе использованы основные технические решения в области САР, обсуждавшиеся в главе П. [c.145]

    Общая характеристика печей КС для эндотермического обжига. Установка с печью КС состоит из рабочей камеры, загрузочных, выгрузочных и тягодутьевых устройств, устройства для сжигания топлива, системы приборов контроля и автоматического регулирования процесса. Рабочая камера печи представляет собой футерованную шахту, перекрытую сводом, В зависимости от способа подвода теплоты имеется выносная топка либо устройство для сжигания топлива непосредственно в КС обрабатываемого материала. Для обеспечения достаточной плотности футеровки обычно печи имеют круглую форму, а вертикальный разрез печи может иметь форму прямоугольника или конуса с вершиной внизу или вверху либо комбинацию таких форм [57.  [c.171]

    Различные системы, в том числе системы автоматического регулирования и управления, могут быть устойчивыми или неустойчивыми в зависимости от характеристик и параметров входящих в них устройств. Понятие устойчивости определяет способность системы сохранять заданные состояния равновесия или заданные виды движения. Как отмечено в гл. I, обеспечение устойчивости является одной из основных задач, прежде всего решаемых при создании систем автоматического регулирования и управления. [c.106]

    Самонастраивающиеся САР. Рассмотренные законы регулирования успешно используются, если св-ва объектов линейны и не изменяются во времени. Однако в пром. условиях характеристики объектов м. б. нелинейными, напр, зависящими от нагрузки на аппарат, а также изменяться во времени (напр., активность катализатора). Тогда с целью сохранения высокого кач-ва регулирования применяют адаптивные, или самонастраивающиеся, системы, к-рые при изменении характеристик объекта автоматически изменяют параметры автоматич. регуляторов или даже их структуру. При этом можно использовать разл. принципы самонастройки. [c.24]

    При пренебрежимо малой зоне нечувствительности Ua = О, Ki = Кг статическая характеристика усилителя будет такой, как на рис. 6.1, в. Если известно, что при использовании усилителя в системе автоматического регулирования или управления изменения входной величины меньше значений нь , то зона насыщения на статической характеристике не учитывается (рис. 6.1, г). [c.170]

    После того как выбрано технологическое оборудование и автоматическая система регулирования, на машине решается наиболее важная задача — синтез АСЗ. Для этой цели модель процесса (объекта) корректируется согласно новым значениям свойств оборудования и дополняется математическим описанием АСР. После этого на машине проигрываются все случаи отказов технологического оборудования (клапанов, дозаторов, насосов, замусоривание трубопроводов, потери свойств теплопередающими поверхностями, катализаторами и т. п.) и все случаи отказов АСР (отказы датчиков, регуляторов. исподнитеАьньтх механи.чмов). На основании полученных данных находят опасные параметры, динамику их изменения, выбирают датчики и виды защитных воздействий, согласовывают временные характеристики звеньев АСЗ с динамикой объекта и рассчитывают надежность АСЗ. Обычно вероятность аварии из-за отказа АСЗ не превышает [c.181]

    Некоторое снижение требований к быстродействию хроматографов достигается применением их в каскадных системах регулирования в качестве корректора регулятора. Однако и в этом случае динамические характеристики хроматографа оказывают существенное влияние на свойства системы. Влияние на качество регулирования продолжительности цикла работы хроматографа как датчика каскадной системы регулирования ректификационной колонны с известными динамическими характеристиками было исследовано с помощью аналоговой вычислительной машины [7]. Система регулирования была построена по следующей схеме. Хроматограф контролировал состав смеси в конденсаторе паров верхнего продукта. Информация о содержании ключевого компонента в дистилляте поступала в качестве корректирующего сигнала на регулятор расхода нижнего продукта. Было показано, что при изменении нагрузки колонны состав дистиллята стабилизировался при использовании хроматографа с четырехминутной периодичностью анализа за время, вдвое большее, чем нри использовании хроматографа с одноминутной периодичностью. При увеличении продолжительности цикла анализа свыше четырех минут качество регулирования существенно ухудшалось. Для предварительной оценки пригодности хроматографа для работы в системе автоматического регулирования можно воспользоваться рекомендацией, предложенной в работе [8] запаздывание информации в системе регулирования по времени не должно превышать 20% от продолжительности переходного процесса в объекте. [c.158]

    Существует огромное количество различных методов расчета систем автоматического регулирования. Методы, разработанные зарубежными (западными) специалистами, в основном используют логарифмические частотные характеристики, тогда как в практике отечественных специалистов по автоматизации химических процессов больше применяются обычные или расширенные частотные характеристики Расчет систем регулирования состоит не только в обеспечении устойчивости системы, но и в выполнении определенных критериев качества регулирования. Подробные сведения о методах таких расчетов можно найти в книге В. Я- Ротача — Доп. ред. [c.134]

    В теории автоматического регулирования большое значение придается методам определения динамических характеристик регулируемых систем с помощью оценки результатов измерений входных и выходных величин реальной системы. Конечно, эти методы можно в большой степени механизировать, особенно при использовании вычислительной техники. Можно также составить программы для практической реализации таким образом, чтобы исполнителю не пришлось усваивать подробности математических выводов и методов их обоснования. Однако опыт показывает, что удовлетворительные результаты можно получить только в отдельных случаях и что теория в этой области еще в большом долгу перед практикой. Наконец, существует мнение, что определение динамических характери- [c.5]

    Датчики температуры в теплооб.меннике следует размещать по возможности ближе к активной поверхности теплообменника необходимо, чтобы поток рабочей среды в этом месте был достаточно хорошо перемешан. Если точка измерения удалена от активной поверхности теплообменника (например, при установке датчика в выходной трубе), то временная задержка оказывает существенное влияние на характеристики автоматического регулирования, так как возникает сдвиг по фазе и слегка уменьшается сигнал. При длине трубы 1,5 м и линейной скорости 1,5 м1свк задержка передачи будет составлять 1 сёк, что существенно ухудшит динамические свойства системы автоматического регулирования теплообменника. [c.495]

    При возникновении кавитации подача насоса ограничивается из-за частичного парообразования на входе в колесо. Нормальная Я—( -характеристика 1 на рис. 4.11 в этом случае переходит в одну из частных Н—С-характеристик, зависящих от располагаемого кавитационного запаса. При этом рабочая точка перемещается в положение а, б, в или г в зависимости от уровня в приемном резервуаре. Таким образом может осуществляться автоматическое регулирование подачи в зависимости от поступления жидкости в приемный бак. Однако рабочая точка не должна выходить за область, ограниченную штриховой кривой 6, иначе может произойти полный срыв работы насоса или недопустимая пульсация давления в системе. Как отмечает Б. М. Певзнер [491, опыт эксплуатации системы саморегулирования конденсатных насосов на судах показывает, что они могут работать в этом режиме длительный период без существенных, повреждений. [c.132]

    Насколько полно выбранный закон регулирования удовлетворяет требованиям, предъявленным к процессу регулирования, можно судить только по результатам анализа поведения автоматической системы в переходном процессе с учетом действительных характеристик регулятора. Для этого на основании полученных данамических характеристик объекта рассчитаны настроечные параметры регулятора, обеспечивающие оптимальный процесс регулирования. Эти параметры устанавливают на регуляторе с помощью настроечных органов регулятора и проверены в процессе нормальной эксплуатации системы в следующем диапазоне возмущающих воздействий расход фильтрованной воды 4000 8000 м /ч (по одному коллектору) фоновое содержание фтора в поступающей воде 0,12 — 0,28 мг/л температура поступающей воды 1 - 5°С концентрация рабочего раствора фторреагента 0,6 - 2,0% по NaF. [c.136]

    На ряде заводов для чистки теплообменников, а также других аппаратов применяют стационарные или передвижные трехплунжерные насосы высокого давления ХДП фирмы Хаммель-ман , отличающиеся высокими эксплуатационными характеристиками. Они развивают рабочие давления 180—250 МПа при производительности до 2 м /ч и снабжены двигателем мощностью 130 кВт. Автоматическое бесступенчатое регулирование давления в системе обеспечивает оптимальную связь насоса с потребителем она мгновенно сбрасывает давление при отсутствии расхода через потребляющее устройство, т. е. при перекрытии струйного пистолета. Специальный электромагнитный байпасный клапан обеспечивает дистанционное управление подъемом и сбросом давления нагнетания. Все перечисленное, а также специальные высоконанорные армированные шланги и пусковая арматура обеспечивают относительную безопасность чистки аппаратов, однако необходимо соблюдение особых мер безопасности. Струйный пистолет должен находиться под постоянным наблюдением, чтобы исключить его самопроизвольное срабатывание от случайного удара. С учетом реактивной отдачи струйного пистолета, возможности укорачивания напорного шланга в момент пуска. [c.158]

    Эти значения характерны для клеток ВНК-21 при выращивании их на среде, приготовленной на основе белковых гидролизатов. При выращивании микроорганизмов с иными характеристиками для поддержания тех же значений pH зависимость рС02= (Х) должна, естественно, отличаться. При использовании системы регулирования с погружным датчиком pH требуемый характер изменения рСОг с ростом популяции обеспечивается автоматически. [c.309]

    Для получения требуемых тормозных характеристик служит система автоматического регулирования. Функциональная схема САР электрического тормоза представлена на рис. 165. Электрический тормоз работает в следующих режимах служебного подтормаживания на уклонах с автоматическим под держанием v = onst служебного остановочного торможения с заданной тормозной силой по одной из характеристик = f (v) экстренного торможения по максимально допустимым значениям [c.206]

    Для анализа работы автоматической системы необходимо знать характеристики объекта регулирования (см. гл. I). В большинстве случаев достаточно иметь приближенные характеристики, исходные данные для которых получают эксперимен-тальтгым путем [1]. [c.185]

    САР и АСУТП созданы для автоматического регулирования входных параметров и для достижения определенных характеристик процесса на выходе. Они действуют как следящие самонастраивающиеся системы и во многих процессах выполняют функции пуска и остановки агрегатов, аварийной сигнализации и блокировки. АСУТП тесно связана с технологией и аппаратурным оформлением ХТП и включает датчики величин, преобразователи, аппаратуру передачи информации, устройства контроля регулирования и регистрации информации. [c.147]

    Приведенные выше характеристики элементов и систем получены в случае детерминированных воздействий. Эти характеристики достаточно полно отражают динамические свойства элементов и систем, что позволяет применять их при расчетах реальных систем автоматического регулирования и управления. Однако в действительности воздействия могут иметь случайный характер, в связи с чем полезно знать, как протекают случайные про 1ессы в элементах и системах. Особенно важными становятся исследования случайных процессов при решении задач помехоустойчивости систем автоматического регулирования и управления 138, 39]. [c.62]

    Эффективность работы адсорбционной установки в первую очередь зависит от соответствия способа организации процесса физикохимическим характеристикам обрабатываемых газов и адсорбента. По расходу, температуре, влажности, давлению отбросных газов, концентрации загрязнителя и его свойствам практически однозначно подбираются вид адсорбента (нейтральный, поляризованный или импреги-нированный), конструкция аппарата (с подвижным или неподвижным слоем и т.д.), вид адсорбции (физическая или химическая), режимы обработки (периодическая или непрерывная). На этой стадии разработки должны быть тщательно подобраны и проверены на соответствие друг другу все элементы системы адсорбционного обезвреживания. Необходимо также конструктивно определить способы охлаждения и нагрева адсорбента при сорбции и регенерации, компоновки аппаратов, их обвязки коммуникациями, выгрузки, загрузки и перетока адсорбента, предусмотреть возможность автоматического регулирования процесса. Должны быть разработаны системы удаления или утилизации уловленного загрязнителя, отработанного адсорбента и других отходов Конструктивные параметры адсорбера, свойства адсорбента должны соответствовать времени пребывания, необходимому для полного улавливания или обезвреживания загрязнителя. [c.389]


Смотреть страницы где упоминается термин Характеристика автоматических систем регулирования: [c.97]    [c.33]    [c.83]    [c.24]    [c.132]    [c.9]   
Смотреть главы в:

Основы автоматизации холодильных установок -> Характеристика автоматических систем регулирования




ПОИСК





Смотрите так же термины и статьи:

Динамические характеристики и расчет систем автоматического регулирования процессов очистки воды

Система автоматического регулирования

Системы Системы автоматического регулирования САР

Статические и динамические характеристики звеньев систем автоматического регулирования процесса биологической очистки сточных вод

Статические и динамические характеристики звеньев систем автоматического регулирования процесса биохимической очистки сточных вод

Характеристики регулирования



© 2025 chem21.info Реклама на сайте