Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм репликации генов

    ИЗ двух антипараллельных полинуклеотидных цепей. Наиболее важной особенностью предложенной структуры было спаривание оснований противоположных цепочек путем образования между ними водородных связей. Водородные связи (на рис. 2-21 они указаны пунктирными стрелками) могут образоваться лишь в том случае, если всюду вдоль структуры ДНК аденин образует пару с тимином (две водородные связи), а цитозин — с гуанином (три связи). Таким образом, последовательность нуклеотидов в одной цепи оказывается комплементарной, но не идентичной последовательности в другой цепи. Далее почти сразу же стало очевидно, что последовательность оснований в цепи ДНК содержит в себе закодированную генетическую информацию. Комплементарность двух цепей приводит к очень простому механизму репликации генов на протяжении всех клеточных делений. По этому механизму две цепи ДНК разделяются и вдоль каждой из них синтезируется новая комплементарная цепь, что дает в результате две молекулы ДНК, по одной на каждую из двух дочерних клеток. Принципиальную правильность этой схемы сейчас уже можно считать доказанной. [c.131]


    МЕХАНИЗМ РЕПЛИКАЦИИ ГЕНОВ [c.427]

    В 50-60-х годах XX в., когда была установлена структура ДНК, позволившая объяснить механизм репликации генов, возникло новое название для обозначения этого направления исследований — молекулярная биология. Первоначально молекулярной биологией называли область биохимии, изучающую молекулярные основы общебиологических явлений — наследственности, изменчивости, биологической эволюции. Однако очень скоро значение термина изменилось, и его стали применять в более широком смысле, вплоть до того, что некоторые биохимики считают термины молекулярная биология и биохимия синонимами. [c.13]

    Современное руководство по биотехнологии, написанное авторитетными канадскими учеными. В книге подробно изложены основы генной инженерии механизмы репликации, транскрипции и трансляции методы клонирования, амплификации и секвенирования ДНК конструирование рекомбинантных ДНК введение последовательностей-мишеней в геном микроорганизмов, растений и животных, а также практическое применение генной инженерии для получения лекарственных веществ, вакцин, факторов роста, инсектицидов и т.д. Большое внимание уделено генной терапии и связанным с ней морально-этическим проблемам, патентованию биотехнологических продуктов и способов их получения. [c.4]

    За десять лет, прошедших после обнародования теории двойной спирали ДНК и принципа комплементарности, раскрыты молекулярные механизмы репликации ДНК установлены процессы, отвечающие за расшифровку генетической информации и регуляцию синтеза генных продуктов выяснены многие причины, по которым эти продукты синтезируются в измененном виде. Со времени выхода в свет этой публикации и до наших дней открытие Уотсона и Крика нисколько не утратило своего значения. В частности, если бы не была установлена структура ДНК, сейчас не существовало бы технологии рекомбинантных ДНК. [c.45]

    Механизмы репликации ДНК, транскрипции РНК и трансляции белка в общих чертах одинаковы у всех организмов. Эволюция шла не путем изменения основных биосинтетических процессов, а путем образования дополнительных генов для синтеза новых ферментов, новых белков, обладающих разнообразными структурами и функциями. Такой ход эволюции обеспечил огромное разнообразие живых существ на Земле. [c.367]

    Модель Уотсона—Крика дает общее молекулярное описание структуры и функции генов, предполагает принцип репликации генетического материала. Доказательство полуконсервативного механизма репликации ДНК заставило по-новому взглянуть на основные характеристики двойной спирали Уотсона—Крика. Для того чтобы понять, как работает полуконсервативный механизм репликации, необходимо ответить на ряд вопросов как разделяются комплементарные нити ДНК, закрученные одна вокруг другой Какая ферментативная система воспроизводит ДНК с учетом антипараллельности ее цепей и др. [c.126]


    Одинаковая длительность фазы S в одном случае у гаплоида и диплоида, в другом случае у диплоида и тетраплоида-это не столь уж и удивительно. Если отдельные хромосомы и области внутри хромосом реплицируются в определенном порядке, to при уменьшении вдвое или удвоении числа хромосом порядок репликации не должен изменяться. Соотношение между числом генов, ответственных за механизм репликации (кодирующих ДНК-полимеразы, геликазы, факторы инициации и т.д.), и общим количеством ДНК также сохраняется. Напротив, у разных организмов соотношение между количеством этих генов и содержанием ДНК скорее всего варьирует, и этим может объясняться корреляция, на которую указывают данные в табл. 13-1. [c.474]

    Почему эксперимент Мезельсона и Шталя свидетельствовал в пользу существования двойной спирали и постулированного механизма репликации генов  [c.470]

    Сходство обмена веществ у галофильных и обычных микроорганизмов. Об успешном приспособлении галофилов к жизни в условиях крайне высокой солености свидетельствует то, что они обладают таким же (в функциональном отношении) метаболическим аппаратом, как и аналогичные негалофильные формы. У галофилов и негалофилов существуют одни и те же пути синтеза АТФ, одни и те же механизмы репликации генов и синтеза белков. Однако в основе такого функционального сходства должны лежать огромные биохимические различия между галофилами и негалофилами. Как мы уже подчеркивали в гл. 1, видимые черты сходства в физиологической функции часто существуют только благодаря тому, что биохимический аппарат, ответственный за эту функцию, специально приспособлен для работы при тех условиях внешней среды, в которых живут данные организмы. [c.126]

    Дальнейший прогресс в понимании механизмов репликации генов, их функционирования и перекомбинации всецело связан с успехами молекулярной генетики. На основе этих исследований родилась новая отрасль науки — генная инженерия, которая позволяет манипулировать индивидуальными генами, получать в пробирке их новые сочетания, получать мутации по желанию экспериментатора, переносить гены одних организмов в клетки других и таким образом конструировать биологические системы, которых никогда не было в природе. [c.17]

Рис. 30-11. Встраивание ДНК фага X в хромосому , соН в неэкспрессируемом еостоянии, которое может поддерживаться посредством репликации в течение многих поколений. В результате некоего события, играющего роль пускового механизма, вирусный геном может начать экспрессироваться с образованием фаговых частиц и последующим лизисом клеток. Рис. 30-11. Встраивание ДНК фага X в хромосому , соН в неэкспрессируемом еостоянии, которое может поддерживаться посредством репликации в течение многих поколений. В результате некоего события, играющего роль <a href="/info/1854802">пускового механизма</a>, <a href="/info/32760">вирусный геном</a> может начать экспрессироваться с образованием <a href="/info/1403672">фаговых частиц</a> и последующим лизисом клеток.
    Репликация ДНК. У бактерий, так же как и у высших организмов, носителем генетической информации служит ДНК. Рассматривая структуру клетки, мы уже говорили о том, что бактериальная ДНК представляет собой двойную спираль, замкнутую в кольцо. Сразу же возникает вопрос как сохраняется наследственная информация при росте и размножении клеток Перед их делением происходит идентичная редупликация, или репликация, генов. Этот процесс можно удовлетворительно объяснить, исходя из модели структуры ДНК, предложенной Уотсоном и Криком, и из механизма удвоения ДНК, теперь уже известного (см. с. 36). Две цепи двойной спирали ДНК комплементарны друг другу. На каждой цепи из структурных элементов ДНК-дезоксирибонукле-озидтрифосфатов-синтезируется новая цепь при этом с каждым из оснований спаривается комплементарное ему основание, так что каждая из двух новых цепей опять-таки будет комплементарна родительской цепи. Обе новые двойные спирали состоят из одной родительской и одной вновь синтезированной цепи. Эта точная репликация ДНК гарантирует сохранение генетической информации. [c.435]

    Репликация ДНК — система ферментативных процессов, ведущих к образованию и воспроизведению ДНК в клетке. Исходным пунктом множества гипотез, объясняющих репликацию ДНК, служит предположение о том, что ДНК как химический материал гена должна синтезироваться в виде копий (реплик) уже существующих молекул. Это подтверждается тем, что по нуклеотидному составу вновь синтезированная ДНК такая же, как ДНК-матрица. Макромолекулярная модель ДНК, предложенная Уотсоном и Криком, помогает объяснить механизм репликации. Легко представить произвольный участок молекулы ДНК с определенной последовательностью нуклеотидов (рис. 22, верхняя часть рисунка). В соответствующих у повиях две полинуклеотидаые цепи ДНК раскручиваются и, отделяясь друг от друга, образуют одиночные цепи (рис. 22, средняя часть). Затем к каждому из оснований любой из одиночных цепей о участием ДНК-зависимой ДНК-полимеразы по принципу компле- [c.73]

    Механизм репликации. Рассмотрим наиболее характерные черты механизма репликации. Синтез полинуклеотидных цепей при репликации катализируется ферментом Щ1К-полимеразой. Подобные синтезы можно осуществить in vitro, используя ферменты, выделенные из организма ]ЩК-полимеразнаяреакция. На ДНК-полимеразной реакции основан клинико-биохимический метод определения причин наследственных заболеваний и методы генной инженерии (см. главы 19 и 21). [c.349]


    Вследствие различия в механизмах экспрессии генов у прокариот и эукариот, Е. oli может оказаться хозяином, мало подходящим для производства белков эукариотических организмов. Поэтому разработаны методы получения векторов для клонирования различных генов в клетках дрожжей - одноклеточных эукариот. Эти клонирующие векторы получают из репликонов дрожжевых клеток, так называемых 2 л-плазмид. Точки начала репликации этих векторов взяты у плазмид 2 л и у pBR322, в результате чего они могут реплицироваться как в дрожжевых клетках, так и в . соИ. Примером использования дрожжей для синтеза белков посредством клонирования генов эукариот может служить осуществленный таким образом синтез интерферона человека (интерферон-белок, обладающий противовирусным действием в клетках человека и, возможно, противоопухолевым действием вообще). [c.290]

Рис. 21-26. Возможный механизм амплификации гена, приводящей к избыточной продукции белка Процесс начинается с акта дупликации, в основе которого, но-видимому, лежит незаконная рекомбинация. Изображенная на рисунке схема предполагает, что незаконная рекомбинация может быть следствием дестабилизирующего эффекта избыточной репликации ДНК. Если дупликация гена произошла, неравный обмен сестринских хроматид в результате рекомбинации между одинаковыми копиями генов в ходе репликации ДНК может дополнительно увеличить число копий гена (см. разд. 10.5.2) в результате их количество в хромосоме может достигать десятков и сотен. Многочисленные повторы ДНК делают видимым содержащий их сегмент — он выявляется в хромосоме как область гомогенного окрашивания. Амплифицированный участок может быть также вырезан из своего локуса (видимо, опять же с участием какого-то из рекомбинационных механизмов) и дать начало самостоятельным двойным минихромосомам (см. разд. 21.1.13). Общая длина амплифицированного по такому механизму сегмента ДНК обычно Рис. 21-26. <a href="/info/1351709">Возможный механизм</a> <a href="/info/99133">амплификации гена</a>, приводящей к избыточной продукции <a href="/info/169191">белка Процесс</a> начинается с акта дупликации, в основе которого, но-видимому, лежит <a href="/info/1324860">незаконная рекомбинация</a>. Изображенная на рисунке схема предполагает, что <a href="/info/1324860">незаконная рекомбинация</a> может быть следствием дестабилизирующего <a href="/info/1682349">эффекта избыточной</a> репликации ДНК. Если <a href="/info/32920">дупликация гена</a> произошла, неравный <a href="/info/1386587">обмен сестринских хроматид</a> в <a href="/info/1394602">результате рекомбинации</a> <a href="/info/609598">между одинаковыми</a> <a href="/info/510097">копиями генов</a> в ходе репликации ДНК может дополнительно увеличить <a href="/info/1875790">число копий гена</a> (см. разд. 10.5.2) в результате их количество в хромосоме может достигать десятков и сотен. Многочисленные повторы ДНК делают видимым содержащий их сегмент — он выявляется в хромосоме как <a href="/info/5035">область гомогенного</a> окрашивания. Амплифицированный участок может быть также вырезан из своего локуса (видимо, опять же с участием какого-то из <a href="/info/1338422">рекомбинационных механизмов</a>) и <a href="/info/1699006">дать начало</a> самостоятельным двойным минихромосомам (см. разд. 21.1.13). <a href="/info/1439357">Общая длина</a> амплифицированного по <a href="/info/1588751">такому механизму</a> сегмента ДНК обычно
    Казалось бы, что на рубеже 70-х гг. молекулярная биология достигла определенной степени завершенности были установлены структура [1347] и механизмы репликации ДНК, провозглашена центральная догма экспрессии гена (транскрипция, трансляция), выяснены основные аспекты регуляции активности гена. В этот период главным объектом молекулярно-генетических исследований были микроорганизмы. Переход к эукариотам (включая человека) встретился с дополнительными проблемами и трудностями, и кроме того, существовавшие в то время методы не позволяли рассчитывать на получение принципиально новых результатов. Стремительный прорыв в развитии молекулярной генетики в начале 70-х гг. стал возможен благодаря появлению нового экспериментального инструмента-рестрикционных эндонуклеаз. Был открыт путь для широкомасштабного получения генных продуктов (физиологически значимых белков) и для генетического манипулирования с различными организмами. Наши знания о структуре и функции генетического материала у эукариот, включая человека, заметно пополнились. Новые, совершенно неожиданные факты, имеющие как теоретическое, так и практическое значение, были открыты в разных областях, таких, как действие гена, популяционная генетика, эволюция и генетическая консультация, включая пренатальную диагностику (разд. 4.3 и 9.1). Достигнутые успехи заставили ученых задуматься об этической стороне манипулирования с человеческим зародышем, об опасности возникновения возбудителей в процессе генно-ин-женерных исследований. Многие из этих вопросов были подняты самими учеными, активно работающими в данной области. В настоящее время большинство исследователей считает, что опасения, касающиеся [c.122]

    Обратимся к результатам, полученным последователями Менделя. Вскоре после переоткрытия его законов было сформулировано представление о единице наследования, рекомбинации и функции, которая теперь называется геном . Благодаря этому был открыт путь для исследования механизмов репликации, рекомбинации и действия генов. Поэтапное раскрытие [c.247]

    Это открытие сразу прояснило механизм удвоения, репликации , генов через образование комплементарных пар О—С и А—Т (О — дезоксигуаниловая, С — деокси-цитидиловая, А — дезоксиадениловая, Т — тимидиловая кислоты). Стал ясен молекулярный механизм наследования Поэтому 1953 г. считают обычно годом рождения молекулярной биологии. Примерно в это же время сформировались идеи о том, что перенос генетической информации от ДНК к белку идет через РНК, т. е. в клетке существует информационная цепочка ДНК- РНК- белок. Эти представления были подкреплены выделением ферментов синтеза ДНК по матрице ДНК и синтеза РНК по матрице ДНК, т. е. ДНК-зависимых ДНК-полимеразы и РНК-полимеразы. [c.6]

    В настоящее время наши знания об организации генома бактериальной клетки, содержащей около 5 тыс. генов, достаточно полны. Для Е. oli, наиболее изученного микроорганизма, известно уже около 2500 генов. Познаны молекулярные механизмы репликации ДНК, транскрипции и трансляции, регуляции активности генов. Тенденцией сегодняшнего дня является сознательное конструирование штаммов микроорганизмов с заданными свойствами с использованием фундаментальных данных молекулярной биологии, генетики, генной инженерии. Собственно говоря, применение названных подходов в сочетании с приемами классической селекции и составляет суть современной селекции микроорганизмов. [c.8]

    Создание высокоактивных штаммов с заданными свойствами во многом зависит от уровня знаний об организации генома и регуляции метаболизма микробной клетки. Для Е. соИ известны молекулярные механизмы репликации ДНК, транскрипции и трансляции, регуляции активности разных генов, лучше всего разработаны приемы генетического конструирования in vivo и in vitro. Именно поэтому первые работы по созданию промышленных штаммов микроорганизмов современными методами выполнены на этом микроорганизме. Распространение методологии генной инженерии на другие объекты требует дополнительных исследований. Как уже было показано, здесь достигнуты значительные успехи — сконструированы удобные векторы для псевдомонад, бацилл, актиномицетов и дрожжей. На этой основе будут созданы и уже создаются новые высокоактивные штаммы для промышленности. [c.180]

    В течение последующих 18 месяцев, до тех пор, пока не прояснилась двуспиральная структура ДНК, мы часто обсуждали неизбежность того, что правильная структура должна обладать способностью саморепликации. Находясь в пессимистическом настроении, мы часто беспокоились, не окажется ли истинная структура неинтересной не будет ли она чем-то инертным, вроде коллагена. Поэтому открытие двойной спирали принесло нам не только радость, но и облегчение. Это было невероятно интересно и сразу позволило нам сделать важное предположение о механизме дупликации генов. Кроме того, наша схема репликации ДНК предусматривала участие вполне понятных обычных химических сил. Ранее некоторые физи-ки-теоретики, среди которых был Паскаль Иордан, предполагали, что многие биологические явления (особенно репликация генов) могут базироваться на еще не открытых силах дальнего действия , возникающих вследствие резонансных кванто-во-механических взаимодействий. Полингу очень не нравилось это предположение, и он твердо настаивал на том, что уже познанные силы ближнего действия между комплементарными поверхностями могут быть основой биологической репликации. [c.567]

    В зараженных клетках и в вирусных частицах ДНК SV40 и вируса полиомы ассоциирована с клеточными гистонами. Вирусную хромосому, таким образом, можно рассматривать как упрощенную модель более сложных клеточных хромосом. Такая модель чрезвычайно удобна для изучения механизмов репликации и транскрипции эукариотических генов. [c.250]

    Для того чтобы произошел горизонтальный перенос генов, генетический материал должен преодолеть два препятствия — барьер для проникновения чужеродной ДНК (чужДНК) в клетку и барьер для ее наследования. Эти препятствия реализуются в виде механизмов предотвращения генетического контакта между донорной и реципиентной клетками, расщепления чужДНК, исключения ее из процессов репликации и сегрегации, блокирования ее экспрессии. Несмотря на многочисленность этих механизмов, переносы генов между видами и даже между царствами происходят (рис. 5.8). Как же преодолеваются эти барьеры в природе  [c.151]

    Реитерация последовательностей может происходить в результате общей рекомбинации между неаллельными i омологичными участками ДНК (разд. 2.4). Последовательные раунды такого неравного кроссинговера могут приводить к удлинению или укорочению длинных тандемных повторов. Вначале амплификация может захватывать довольно короткие гомологичные участки (рис. 9.31)-такие, как нонануклеотиды, встречающиеся с большой частотой в сателлитной ДНК мыши. Известная пластичность тандемных повторов в значительной степени обусловливается неравной гомологичной рекомбинацией, хотя нельзя исключить и такие механизмы, как генная конверсия или проскальзывание ДНК во время репликации. [c.195]

    Лучше всего изучен механизм репликации митохондриальной ДНК мышей (рис. 2.5). Напомним, что каждая из цепей этой дуплексной молекулы имеет свою точку начала репликации Ori-H и Ori-L. В мышиных клетках (но не у всех особей) большинство митохондриальных ДНК содержат короткий сегменг реплицированной Н-цепи (550-650 т.п.н.) и так называемую D-петлю (от англ. displa ement) в области Ori-H. Другая необычная особенность зрелых геномов состоит в наличии рассеянных по геному рибонуклеотидов вместо дезоксирибонук-леотидов. Возможно, эти нуклеотиды - остатки РНК-праймеров, необходимых для репликации ДНК, и рибонуклеотидных вставок, участвующих [c.222]

    ААТААА (разд. 8.3). В ходе работы с этими вирусами были открыты интроны и сплайсинг (разд. 8.5), а также белки, регулирующие транскрипцию, например Spl (разд. 8.3). И до сих пор эти вирусы остаются весьма ценной модельной системой при изучении новых аспектов молекулярной генетики эукариот и используются для конструирования эукариотических векторов. Например, исследуются механизмы репликации вирусных геномов созданы системы, в которых такая репликация осуществляется in vitro. Эти, а также другие ДНК-содержащие вирусы могут служить моделями для изучеиия дифференцировки и развигия сложных организмов, поскольку их жизненный цикл состоит из упорядоченных во времени событий, а кроме того, для них характерны альтернативные способы поведения. Например, вирус SV40 размножается в определенных клетках приматов, но в клетках грызунов он не реплицируется. Вместо этого его геном встраивается в клеточную ДНК, вызывая злокачественное перерождение (рис. 1V.4). [c.346]

    На рубеже 70-х гг. XX в. молекулярная генетика достигла определенной завершенности в своем развитии были установлены структура и механизм репликации ДНК, провозглашена центральная догма экспрессии гена (транскрипция, трансляция), выяснены основные аспекты регуляции активности гена. Главным объектом исследования в то время служили микроорганизмы. Существовавпше в тот период методы не позволяли серьезно продвинуться в изучении строения геномов эукариот, в том числе и генома человека. Стремительный прорыв в молекулярной генетике в 70-е гг стал возможен благодаря появлению новых экспериментальных подходов — использованию рестрикционных эндо-нуклса.3 и становлению нового направления в молекулярной генетике — генной инженерии. С помощью этих методик были открыты совершенно неожиданные факты, имеющие теоретическое и практическое значение в областях знаний, связанных с действием генов. Это относится к генетическому консультированию, включая нрена-та7П>ную диагностику, к развитию новых подходов в изучении проблем эволюции и популяционной генетики. Эти же успехи заставили ученых задуматься об этической стороне манипулирования с человеческим зародышем, [c.65]

    В монографии рассмотрены современные представления о строении и механизмах функционирования генов прокариот и эукариот, а также основные методы их исследования. Книга состоит из двух частей. В первой части обсуждаются структура генома прокариотических и эукариотических организмов, а также механизмы транскрипции, трансляции, репликации, репарации и их регуляции. Сформулирована современная концепция гена. Во второй части монографии рассмотрены принципы основных методов, используемых в исследованиях генов. Главное внимание уделено современным методам генной инженерии. Обсуждаются наиболее важные аспекты развития современной молекулярной генетики в исследованиях направленного мутагенеза и белковой инженерии, антисмысловых РНК, аптамеров, рибозимов и дезокси-рибозимов, трансгеноза и генотерапии, а также достижения в разработке микрочипов ДНК, ДНК-диагностике и ДНК-типировании и изучении генома человека. В книге учтены данные литературы на конец 1999 г. [c.277]

    У многих вирусов генетическая информация также закодирована в ДНК. Механизмы репликации, репарации, перестройки и экспрессии вирусной ДНК аналогичны механизмам, используемым клетками других организмов. Геном некоторых вирусов представлен не ДНК, а РНК. Геномная РНК таких вирусов либо непосредственно транслируется в белки, либо обладает генетической информацией, необходимой для синтеза молекул РНК, которые Б свою очередь транслируются в белки. Те вирусы, у которых геном представлен РНК в течение всего жизненного цикла, должны сами реплицировать родительскую РНК для получения потомства вирусных частиц. Существует класс ретровирусов, репродуктивный цикл которых начинается с того, что их генетическая информация в ходе так называемой обратной транскринции переводится на язык ДНК. Полученные копии ДНК, или провирусы, способны к регшикации и экспрессии только после интеграции в хромосомную ДНК клетки. В такой интефированной форме вирусные геномы реплицируются вместе с ДНК клетки-хозяина, и для образования нового поколения вирусных геномов и мРНК, нужной для синтеза вирусных белков, они используют транскрипционный аппарат клетки. [c.38]

    С того времени, как было высказано это предположение, матричная природа механизма репликации была подтверждена многочисленными данными, полученными как in vivo, так и in vitro для различных организмов. Согласно модели, репликация всех двухцепочечных ДНК полуконсервативна (рис. 22). Существуют ли в природе альтернативные способы репликации двухцепочечной ДНК (например, консервативный или дисперсный) —неизвестно. Итак, после одного раунда репликации одна цепь в каждой из двух дочерних молекул является родительской, т.е. консервативной, а другая—синтезированной заново. Если геном представлен одноцепочечной ДНК (как в некоторых вирусах), то эта единственная цепь служит матрицей для образования комплементарной цепи, с которой она об- [c.68]

    Накопление, передача и экспрессия (выражение в фенотипе) генетической информации составляют основную тему части IV. В начале описьгоаются эксперименты, показывающие, что ДНК является генетическим материалом, а также история открытия двойной спирали ДНК. Затем следует описание ферментативного механизма репликации ДНК. Далее мы перейдем к экспрессии генетической информации, заключенной в ДНК, начав с описания данных о роли информационной РНК как промежуточного переносчика информации. Затем рассматривается процесс транскрипции, т. е. синтез РНК в соответствии с инструкциями, заключенными в матричной ДНК. Из этого логически вытекает описание генетического кода, т.е. взаимосвязи между последовательностью оснований в ДНК (или в транскрибируемой с нее информационной РНК) и последовательностью аминокислот в соответствующем белке. Генетический код, общий для всех живых организмов, прекрасен своей простотой. Три основания составляют кодон-единицу кода, соответствующую одной аминокислоте. Кодоны в информационной РНК последовательно считываются молекулами транспортных РНК, которые выполняют роль адапторов в син-тезе белка. Далее мы переходим к механизму белкового синтеза, а именно к процессу трансляции, в ходе которого четырехбуквенный алфавит нуклеиновых кислот, в котором каждая буква представлена соответствующей парой оснований, переводится в 20-буквенный алфавит белков. Трансляция происходит на рибосомах и обеспечивается координированным взаимодействием более чем сотни различных высокомолекулярных соединений. В следующей главе описывается регуляция экспрессии генов у бактерий, причем основное внимание уделяется оперо-нам лактозы и триптофана у Е. соН, как наиболее изученным в настоящее время. Далее обсуждаются результаты последних исследований экспрессии генов у более высокоорганизованных организмов (т.е. у эукариот), отличающихся от бактерий (прокариот) более высоким содержанием ДНК и наличием оформленного ядра, что обеспечивает диф-ференцировку клеток. Затем рассматри- [c.15]


Смотреть страницы где упоминается термин Механизм репликации генов: [c.104]    [c.435]    [c.426]    [c.209]    [c.117]    [c.410]    [c.410]    [c.95]    [c.102]    [c.306]    [c.137]    [c.428]    [c.473]    [c.395]    [c.72]    [c.82]   
Смотреть главы в:

Молекулярные основы жизни -> Механизм репликации генов




ПОИСК





Смотрите так же термины и статьи:

Гены и механизмы репликации хромосом



© 2025 chem21.info Реклама на сайте