Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматограф, основные узл

    Лекция 12. Аппаратурное оформление газовой и жидкостной хроматографии. Основные узлы хроматографов, детекторы, качественный и количественный анализ. [c.206]

    Колоночная хроматография. Основным узлом хроматографической установки является колонка, в простейшем случае представляющая собой стеклянную трубку, снабженную на конце фриттой и краном. Ее заполняют адсорбентом и пропускают через нее раствор с разделяемыми компонентами. Скорость прохождения раствора регулируют краном. По завершении процесса проявляют хроматограмму, т. е. разделяют зоны, промыв ая колонку чистым растворителем и собирая элюат на выходе отдельными фракциями. [c.243]


    Сущность хроматографии, ес физико-химические основы, история ее возникновения и развития, значение для науки и техники. Разновидности хроматографии. Виды хроматографии. Жидкостная и газовая хроматография, их отличительные особенности и области применения. Газовая хроматография как один из наиболее эффективных и -перспективных методов анализа и препаративного разделения сложных смесей. Варианты газовой хроматографии. Основные задачи газовой хроматографии. Предварительные сведения об аппаратуре, методике и примеры применения газовой хроматографии. Широкие и капиллярные колонки, заполненные и открытые. [c.296]

    Аппаратура для бумажной хроматографии. Основными элементами аппаратуры для БХ являются хроматографические камеры или сосуды, стойки с лотками, пипетки для нанесения проб, приспособления для сушки и элюирования, пульверизаторы, лампы для облучения хроматограмм, приспособления для измерения / /, планиметры и денситометры для количественных определений. [c.353]

    Выходная кривая (см. рис. 35) при фронтальном анализе на колонке с ионообменником отличается от кривой фронтального анализа в адсорбционной хроматографии. -Основное различие состоит в том, что при ионном обмене общая концентрация (в эквивалентах) вытекающего рас- [c.117]

    В осадочной хроматографии основной фактор, определяющий разделение веществ,— процесс образования труднорастворимых осадков в определенном порядке, обусловленном их растворимостью. Для осадочной хроматографии характерно многократное повторение актов образования и растворения осадков по мере фильтрации раствора. В этом ее принципиальное отличие от дробного осаждения. Многократность процесса обусловливается большой поверхностью колонки и обратимостью процессов образования и растворения более растворимых осадков. [c.239]

    Вода представляет собой важнейший растворитель в обращенно-фазной и ионообменной хроматографии. Основными примесями в воде, которые мешают проведению хроматографического процесса, являются различные соли и микропримеси углеводородов и других органических соединений. Присутствие солей недопустимо в ионообменной хроматографии, а примеси органических соединений вызывают существенные затруднения в обращенно-фазной хроматографии (особенно в градиентном элюировании) при использовании флюоресцентного и УФ-детекторов. [c.134]


    В газо-жидкостной хроматографии основным фактором, от которого зависит четкость разделения компонентов, является селективность по отношению к ним жидкой фазы, поэтому подбор се имеет практически решающее значение. [c.19]

    Бумажная хроматография. По своим возможностям методы бумажной хроматографии сходны с методами тонкослойной хроматографии, Основное различие заключается только в том, что в методах бумажной хроматографии сама бумага одновременно является тонким слоем и подложкой. Методы бумажной хроматографии позволяют отделять микро- и ультрамикроколичества Sb от элементов с близкими химическими свойствами. Эти методы ха- [c.109]

    Чувствительность детектора может быть примерно одинаковой ДЛЯ веществ различной химической природы, но может и сильно различаться, иногда даже для близких соединений. В первом случае говорят о неселективном детектировании, во втором — о селективном. Часто селективность детектора имеет не меньшее значение, чем чувствительность, причем в зависимости от характера конкретной аналитической проблемы селективность может оказаться как достоинством, так и недостатком. Так, если разделение преследует цель дать общий обзор состава исследуемого объекта, предпочтение должно быть отдано неселективному детектору. В другой ситуации, когда требуется определить лишь одно соединение на фоне сложной смеси, удобно воспользоваться селективным детектором. Он поможет решить проблему, даже если изучаемая смесь столь сложна, что полное ее разделение невозможно. Такого рода задачи довольно типичны для биомедицинского применения жидкостной хроматографии. Основные характеристики наиболее распространенных типов детекторов даны в табл. 5.3. [c.202]

    Б. ХРОМАТОГРАФИЯ ОСНОВНЫХ ПЕПТИДОВ НА КОЛОНКЕ С АМБЕРЛИТОМ IR -50 [c.196]

    Для газовой хроматографии основной интерес [293] представляет область давлений паров порядка 1—10 мм рт. ст., в которой веш,ество можно довольно быстро элюировать с колонки поэтому нет необходимости проводить эксперимент при температурах, близких к температуре кипения разделяемых вош,еств. Это обстоя- [c.65]

    Разделение по этому варианту хроматографии, основными объектами которого являются преимущественно крупные молекулы, целиком основано на ситовом эффекте, поэтому необхо- [c.227]

    Если перечисленные способы обнаружения оказались неэффективными, необходимо пожертвовать частью слоя. Используется прием, заимствованный из бумажной хроматографии основную часть хроматограммы закрывают, оставляя открытыми узкие полосы по обеим сторонам. Эти полоски обнаруживают подходящим реагентом. Рекомендуют разграничивать эти полосы от основной части хроматограммы, чтобы предупредить возможное просачивание раствора реагента в основной слой. Если по ходу обнаруж ения хроматограмму необходимо нагревать, то закрытую часть слоя покрывают асбестовой, пластиной, а свободные боковые участки хроматограммы после опрыскивания обнаружителем нагревают под инфракрасной лампой. Чтобы быть уверенным в том, что зоны веществ, обнаруженные по краям пластинки, находятся на том же уровне по всей длине слоя, необходимо работать с качественными слоями, равномерно нагруженными на старте разделяемой смесью и проявленными в камере, насыщенной парами растворителя. Можно также пользоваться и таким приемом, при котором обнаруживают предварительную, вспомогательную хроматограмму, а полученные значения Яр переносят вслепую на препаративный слой. Этот способ, однако, требует строжайшего [c.137]

    Введение. Общая схема газового хроматографа. Основные понятия и определения. Сущность и классификация методов хроматографии. [c.147]

    Хроматография. Основные понятая. Терминология. [c.15]

    Системы с динамическим модифицированием широко распространены в современной жидкостной хроматографии. Основной целью такого модифицирования является подавление нежелательных механизмов сорбции, создание условий, для которых характерны линейные изотермы сорбции и, следовательно, симметричная форма хроматографических пиков. Например, при хроматографии ионогенных соединений, в особенности оснований, на силикагеле в обычных бинарных элюентах форма пиков зачастую далека от идеальной потому, что в адсорбционном слое, обогащенном молекулами воды, могут происходить процессы диссоциации и ионного обмена. Стандартный прием их подавления — включение в элюент специфических модификаторов — уксусной кислоты (если сорбаты кислые) или органических оснований (для сорбатов основной природы). С аналогичной целью в обращенно-фазовой хроматографии к элюенту добавляют кислоты или буферные растворы. Во всех системах такого рода с помощью динамического модифицирования удается добиться реализации в более чистом виде тех механизмов [c.169]

    Распределительная хроматография Основные закономерности [c.13]

    Если в гидролизате присутствуют основные или кислые моносахариды, их можно разделить методом ионообменной хроматографии. Основные моносахариды могут быть избирательно элюированы из кислых смол, а кислые моносахариды аналогичным [c.295]


    Следует отметить, что варьирование времени запаздывания в проточной газовой хроматографии оказывает влияние на высоту пика при разделении точно так же, как изменение величины пробы в проявительной хроматографии. Основное различие, однако, состоит в том, что пики в проточной газовой хромато- [c.124]

    Для разделения и выделения элементов можно использовать практически любые аналитические методы. Наиболее общие и получившие широкое применение в активационном анализе методы — осаждение, экстракция и ионообменная хроматография. Основными характеристиками методов разделения являются трудоемкость, затраты времени на выделение одного элемента и чистота разделения. В тех случаях, когда одностадийное выделение не дает необходимой радиохимической чистоты фракций, применяется ряд последовательных операций радиохимической очистки. [c.150]

    В качестве сорбента применяется твердое вещество (газоадсорб-цпонная хроматография) илп жидкость (газожидкостная хроматография). Основной элемент анализатора — разделительная колонка. [c.250]

    Основные узлы приборов газовой хроматографии. Основными узлами хроматографа являются система ввода пробы, термоста-тируемая хроматографическая колонка и детектор. Кроме того, в хроматофафе имеются усфойства для подачи и регулирования потока газа-носителя, для преобразования импульса детектора в соответствующий сигнал и некоторые другие. [c.296]

    К числу наиболее важных в практическом отнощении приложений динамического модифицирования относится ион-парная хроматография. Особое значение этого метода определяется осложнениями, которыми зачастую сопровождается хроматография ионогенных соединений. Так, даже самые современные ионообменные колонки по эффективности существенно уступают колонкам, заполненным силикагелем и алкилсиликагелями. С другой стороны, ионогенные соединения в режиме обращенно-фа-зовой хроматографии "обычно дают асимметрические пики. К тому же наиболее гидцофильные органические кислоты и основания вообще слабо удерживаются неполярными сорбентами. Ион-парная хроматография во многих случаях совмещает в себе достоинства обращенно-фазовой и ионообменной хроматографии. Основные аспекты теории и практического использования ион-парной хроматографии изложены в работах [65, 123, 156, 204, 408]. [c.170]

    Количественный анализ аминокислот методом ГХ представляет несомненный интерес. Как правило, количественное определение аминокислотного состава пептида является одним из решающих моментов анализа последовательности. Поскольку при деградации крупного белка образуется большое число фрагментов, желательно затрачивать на анализ каждого из них минимальное количество времени и вещества. Привлечение в данном случае ГХ достаточно хорошо удовлетворяет этим условиям. Многочисленные исследования по ГХ аминокислот в конечном итоге направлены на решение этой задачи. Однако к действительно эффективному количественному методу предъявляются несоизмеримо более высокие требования, чем к качественному. Если учесть к тому же трудности получения и разделения производных аминокислот, станет ясно, почему до сих пор не разработан стандартный метод их количественного определения с помощью газового хроматографа. Основные трудности связаны, как подчеркивалось в разделе о получении производных, с полифункциональными аминокислотами. Метод, игнорирующий их идентификацию, может найти лишь ограниченное применение. Количественный анализ только простых аминокислот не может удовлетворять экспериментатора [40]. Вопрос о том, все ли аминокислоты, встречающиеся в белках, можно определять ГХ с достаточной точностью, все еще остается открытым. Здссь можно только вкратце рассмотреть имеющиеся условия и возможности. Проблемы, связанные с аппаратурой, необходимой для количественной ГХ, уже обсуждались ранее (см. стр. 302). [c.335]

    Имеется много практических реализаций принципов газовой хроматографии, однако по своим основным конструктивным особенностям вся ГХ-аипаратура очень сходна [1—4]. На рис. 1.1 (см, также гл. 9, разд. I) приведено схематическое описание газового хроматографа. Основными блоками являются следующие  [c.12]

    Мартир и Боэм [82] недавно разработали единую теорию удерживания, которая предсказывает изменение кажущейся константы равновесия между подвижной и неподвижной фазами во флюид-жидкостной хроматографии. Основная особенность этой теории заключается в том, чтобы считать подвижнук> фазу смесью слабого и сильного растворителей, как в жидкостной хроматографии. При низкой плотности подвижной фазы слабым растворителем является пустое пространство. Эта модель приводит к обычным уравнениям (11) и (26), когда плотность газовой фазы низка. Она дает возможность предсказания изменения кажущегося коэффициента распределения с повышением среднего давления газа-носителя вплоть до критического состояния газовой фазы и за его пределами. Это обеспечивает переход к известному выражению удерживания в сверл ри-тической флюидной хроматографии [82]. [c.88]

    Исследовалась также дегидратация метанола на щелочных формах цеолитов типа X и У в N а-, ЬI - и N Н - катионных формах [вб]. Последняя декатионированная форма выбрана авторами для наблюдения за изменениями, вызванными поя < лением в цеолите брендстедовских и л исовских центров. Каталитические исследования проводили импульсным микрок талитическим методом. Газы анализировали методом газожидкостной хроматографии. Основными продуктами превращения метанола оказались ДМЭ и бутен-1. [c.62]

    Хроматография без газа-носителя (высококонцентрационная газовая хроматография). Основным недостат-К0Д1 методов концентрирования, основанных на прояви-тельной хроматографии, является низкая концентрация примесей, элюируемых из хроматографической колонки, и необходимость проведения специальной операции по улавливанию примесных компонентов из потока газа-носителя. [c.68]

    Химические методы в газовой хроматографии, для которых можно использовать и другой развнозначный термин, а именно — аналитическая реакционная газовая хроматография,— основная тема данной книги. [c.7]

    До последнего времени широкое применение находила классическая колоночная хроматография на силикагеле или окиси алюминия. Недавно в химии бора стали использовать сухую колоночную хроматографию. Основными преимуществами этого метода являются хорошее качество и высокая скорость разделения, незначительная степень деструкции твердой фазы под действием водорода (вследствие гидролиза), а также возможность быстрого подбора условий разделения методом ТСХ. Хорошие результаты были получены не только при разделении окрашенных соединений (металлокарбораны, имеющие структуру типа сэндвича), но также и при разделении соединений, поглощающих в УФ-области спектра, при условии проведения хроматографии в кварцевых колонках или в колонках из полиэтилена или полипропилена. Для разделения борорганических соединений пытались использовать гель-проникающую хроматографию [1] и высокоэффективную жидкостную хроматографию [2], однако эти методы требуют дальнейшего усовершенствования. [c.167]


Библиография для Хроматограф, основные узл: [c.506]    [c.290]   
Смотреть страницы где упоминается термин Хроматограф, основные узл: [c.16]    [c.91]    [c.119]    [c.96]    [c.36]    [c.16]    [c.16]    [c.32]    [c.289]    [c.106]   
Хроматографическое разделение энантиомеров (1991) -- [ c.52 , c.56 ]




ПОИСК







© 2025 chem21.info Реклама на сайте