Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды основные, хроматография

    С-Концы пептидных цепей определяются избирательным отщепле нием концевой аминокислоты с помощью специфического фермента — карбоксипептидазы и последующей идентификацией этой аминокислоты. Если макромолекула белка состоит из двух (или более) пептидных цепей, как в случае инсулина (см. рис. 53), то избирательно разрушают дисульфидные мостики окислением (например, надмуравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последовательности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избирательному расщеплению с помощью ферментов, каждый из которых разрывает полипептидную цепь только в определенных местах присоединения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов, которые разделяют, используя методы хроматографии и электрофореза. [c.376]


    Гидролиз белков ферментами пищеварительного тракта применяет-1СЯ главным образом для Проведения неполного ступенчатого расщепления. Полученный тем или иным способом гидролизат содержит смесь аминокислот и аммиак, образовавшийся в -результате расщепления аспарагина и глутамина и частичного дезаминирования пептидов и аминокислот. После предварительного удаления основной массы кислоты или щелочи гидролизат подвергают фракционному разделению на аминокислоты. В течение первых двух десятилетий текущего столетия аминокислоты разделяли в виде их эфиров, которые подвергали перегонке в вакууме (метод Э. Фишера). Позднее этот метод потерял свое значение из-за сложности выполнения и необходимости применения большого количества белка. В настоящее время благодаря появлению метода газовой хроматографии, применение эфиров аминокислот, возможно, вновь окажется интересным. [c.479]

    Только благодаря появившимся в начале 40-х годов новым методам, вопрос об определении аминокислотного состава получил свое полное и окончательное разрешение. В настоящее время основными способами такого определения являются следующие 1) распределительная хроматография 2) ионофорез 3) электрохроматография 4) ионообменная хроматография и 5) противоточное распределение. Последним методом пользуются главным образом при разделении пептидов. Метод распределительной хроматографии на бумаге, разработанный в 1941 г. Гордоном, Мартином и Синджем, положил начало новой эры в развитии химии белка. [c.479]

    Для предварительного разделения пептидов на фракции часто применяют так называемый четырех- или пятикамерный электрофорез. Он позволяет отделить основные, кислые н нейтральные пептиды друг от друга. Каждую из фракций можно подвергнуть затем разделению яри помощи ионообменной хроматографии, микропрепаративным электрофорезом на бумаге или противоточным распределением, ограничиваясь при этом несколькими миллиграммами вещества. В качестве примера представлена схема разделения химотрипсиногена, проведенная Шор-мом с сотрудниками (см. схему на стр. 517). Прекрасные результаты дает метод Хирса, Мура и Штейна— автоматическое разделение пептидов на смоле Дауэкс-50. Строение пептидов, полученных в результате разделения, устанавливают. описанными выше методами. [c.519]

    Окисленная рибонуклеаза. Действие химотрипсина на рибонуклеазу менее специфично, чем действие на этот субстрат трипсина. Об этом свидетельствуют более низкие выходы полипептидов при разделении гидролизата методом ионообменной хроматографии [154]. В выделенных полипептидах установлено наличие 151 аминокислотного остатка, в то время как в полипептидах, полученных в результате расщепления трипсином, обнаружено всего 124 остатка. По-видимому, это объясняется тем, что некоторые участки полипептидной цепи появляются более чем в одном из пептидных обломков. О более сложном составе гидролизата можно судить по небольшим количествам примесей (как правило, не выше 15%), присутствующих в большинстве основных фракций. Эти примеси не мешали определению аминокислотного состава фракций, но их присутствие еще раз подчеркивает трудности, которые встречаются при фракционировании смесей пептидов, полученных менее специфическими методами гидролиза. Гидролизаты рибонуклеазы были получены инкубированием в течение 24 час с ферментом при pH 7. При более кратковременном инкубировании гидролизат содержал дополнительно [c.204]


    Ионообменную хроматографию широко используют и для разделения неорганических соединений, а в органической химии — для разделения смесей кислот или оснований. Классическим примером является разделение смесей аминокислот, образующихся при гидролизе пептидов и белков [43]. Пептиды, белки и ферменты, содержащие кислотные и (или) основные группировки, также могут быть разделены с помощью ионообменной хроматографии. Интересные возможности открываются при использовании сильноосновных смол в бисульфитной форме [44]. Когда смесь альдегидов и кетонов пропускают через такую смолу, они обратимо связываются со смолой в виде бисульфитных комплексов это позволяет разделить компоненты смеси. [c.321]

    Количественный анализ аминокислот методом ГХ представляет несомненный интерес. Как правило, количественное определение аминокислотного состава пептида является одним из решающих моментов анализа последовательности. Поскольку при деградации крупного белка образуется большое число фрагментов, желательно затрачивать на анализ каждого из них минимальное количество времени и вещества. Привлечение в данном случае ГХ достаточно хорошо удовлетворяет этим условиям. Многочисленные исследования по ГХ аминокислот в конечном итоге направлены на решение этой задачи. Однако к действительно эффективному количественному методу предъявляются несоизмеримо более высокие требования, чем к качественному. Если учесть к тому же трудности получения и разделения производных аминокислот, станет ясно, почему до сих пор не разработан стандартный метод их количественного определения с помощью газового хроматографа. Основные трудности связаны, как подчеркивалось в разделе о получении производных, с полифункциональными аминокислотами. Метод, игнорирующий их идентификацию, может найти лишь ограниченное применение. Количественный анализ только простых аминокислот не может удовлетворять экспериментатора [40]. Вопрос о том, все ли аминокислоты, встречающиеся в белках, можно определять ГХ с достаточной точностью, все еще остается открытым. Здссь можно только вкратце рассмотреть имеющиеся условия и возможности. Проблемы, связанные с аппаратурой, необходимой для количественной ГХ, уже обсуждались ранее (см. стр. 302). [c.335]

    Б. ХРОМАТОГРАФИЯ ОСНОВНЫХ ПЕПТИДОВ НА КОЛОНКЕ С АМБЕРЛИТОМ IR -50 [c.196]

    Ионообменная хроматография аминокислот и пептидов. I. Новый метод определения основных аминокислот карбоксильны ми катионитами [1602]. [c.304]

    Адсорбционную хроматографию на угле, крахмале и других классических сорбентах вообще не применяют для разделения пептидов. Этот метод представлен здесь аффинной хроматографией, основанной на биоспецифической сорбции. Правда, аффинную хроматографию в основном применяют при выделении белков, однако метод может оказаться полезным при изучении физиологически активных пептидов. [c.390]

    Основной упор в данной главе будет сделан на синтезе и химических реакциях аминокислот и их простых производных [но не пептидов и белков, которые рассмотрены в томе 10 (русского издания), части 23 и 24]. Кроме того, мы не будем рассматривать здесь несколько важных разделов, интересующих химиков, а именно технику тонкослойной хроматографии [6], практику автоматического аминокислотного анализа [7], химические последствия облучения аминокислот и их растворов [8], метаболические и исторические аспекты [10—12] и аминокислоты как антиметаболиты 13—14]. Более того, мы сконцентрируем внимание на алифатических аминокислотах, хотя и добавлен короткий обзор об ароматических аминокислотах. [c.233]

    Методика получения пептидных карт или отпечатков пальцев очень полезна при определении идентичности полипептидных цепей. Согласно этой методике, белок обрабатывают трипсином, который избирательно гидролизует пептидные связи, образованные карбоксильными группами основных аминокислот, аргинина и лизина. Образующаяся смесь пептидов разделяется с помощью хроматографии и электрофореза. Эквивалентный вес полипептидной цепи рассчитывают по количеству аргинина и лизина в белке и числу разных пептидов, получаемых при триптическом гидролизе. Теоретически общее число пептидов должно равняться сумме числа остатков аргинина и лизина плюс один, [c.401]

    Ионообменная хроматография позволила проводить адсорбцию органических катионов, нанример алкалоидов, разделение смесей кислых, нейтральных и основных аминокислот, анионов различных органических кислот, антибиотиков, очистку сахаров, углеводородов, многоатомных спиртов и антибиотиков от катионов и анионов, разделения пептидов и белковых веществ. [c.197]

    Наибольшей скоростью прохождения колонки обладают компоненты, не способные проникнуть в зерна гелевой фазы. Сефадексы 0-10 и 0-15 служат для фракционирования низкомолекулярных веществ, первый из них используется для веществ с молекулярным весом до 700, а второй — до 1500. Гели сефадекса 0-25 не способны поглощать, а следовательно, и задерживать перемещение по колонке веществ с молекулярным весом 3500— 4500. Этот предел для сефадекса 0-50 лежит в области значений молекулярных весов 8000—10000, а для сефадекса 0-75 эта величина достигает 40000—50000. Медленно перемещаются по колонке низкомолекулярные вещества, для которых коэффициент распределения между гелевой и жидкой фазами приближается к единице. Во многих случаях компоненты смеси при хроматографическом разделении на сефадексах следуют в порядке уменьшения их молекулярных весов. Однако наблюдается иногда и специфическое сорбционное взаимодействие разделяемых веществ с матрицей сефадекса, что влечет за собой увеличение коэффициента распределения К и снижение скорости перемещения по колонке. Так, замедление движения хроматографических зон наблюдается у основных пептидов и аминокислот в основных растворителях и кислых аминокислот и пептидов в кислых растворителях. Наблюдается также повышение степени удерживания в колонке ароматических веществ при гельфильтрации [22]. Ряд белков, таких как рибонуклеаза, лизоцим, трипсин, бычий сывороточный альбумин, в отсутствие солей также сорбируется и удерживается сефадексом при хроматографии. В связи с этим целесообразно проводить элюирование на сефадексах растворами солей или кислот. [c.202]


    Основные пептиды, содержащие ё-ДНФ-лизин, можно отделить от бесцветных пептидов "адсорбционной хроматографией на тальке. ДНФ-производные адсорбируются у верхнего конца короткой промытой кислотой колонки с тальком (5 г) посторонние вещества смывают 1 н. соляной кислотой. Смесью 4 частей этанола и 1 части 1 н. соляной кислоты вымывают ДНФ-производные. Смесь е-ДНФ-лизинсодержащих пептидов можно фракционировать на колонке с силикагелем, обработанным 1 н. соляной кислотой (0,5 мл НС1 на г силикагеля), используя в качестве растворителя 66%-ный метилэтилкетон — эфир или этилацетат. [c.158]

    Хроматография на ионообменной смоле 1R -50 [25, 72]. Ионообменник IR -50 — слабо кислая смола, несущая карбоксильные группы. Она особенно удобна для разделения пептидов основного характера ароматические остатки не имеют к ней большого сродства, а кислые пептиды на колонках с этой смолой не задерживаются. Смолу IR -50 последовательно обрабатывают кислотой и основанием, а затем переводят в форму свободной кислоты, промывая 50%-ной ук сусной кислотой. При обработке кислотой или основанием смола не нейтрализуется мгновенно, как это имеет место в случае сильно кислых или сильно основных смол, и ее необходимо выдерживать с каждым реагентом приблизительно в течение 30 мин. [c.118]

    Большинство аминокислот практически не поглощает свет в доступной для регистрации области, так что их приходится окра-тпвать нпнгидрином. Этот метод окраски будет подробно рассмотрен в приложении 2, посвященном аминокислотным анализаторам. Пептиды и белки поглощают свет в области 206—215 нм за счет пептидной связи и в широкой области спектра с максимумом вбли- и1 280 нм за счет присутствия в них ароматических аминокислот. Азотистые основания и нуклеиновые кислоты хорошо поглощают вблизи 260 нм. Поэтому не удивительно, что основной метод детектирования в хроматографии белков и нуклеиновых кислот — это регистрация поглощения света в ультрафиолетовой области спектра. Соответствующие приборы мы будем для краткости именовать УФ-детекторами. [c.82]

    Одним нз основных объектов хрОхматографии на бумаге явились с самого начала различные аминокислоты, пептиды и белки. На примере разделения аминокислот была разработана техника распределительной хроматографии отбор проб для анализа, получение и проявление хроматограммы, состав растворителей, и установлена определенная зависимость между структурой аминокислоты и их хроматографическими характеристиками при различном химическом составе и соотношении растворителей в их смеси. Было изучено разделение различных производственных аминокислот, комплексных соединений с катионами металлов, определение аминокислот в микробиологическом материале, после гидролиза, в растительном материале, в тканях животных, в крови, плазме, сыворотке крови, кровяных тельцах, моче, лимфе, эксудатах, спинномозговой жидкости, жидкости глазной камеры, желудочном соке, сперме, молоке, в органах, мускулах, в насекомых, животных, хромозомах, нуклеопротеинах, гисто-нах, протаминах, кератине, при различиях в группах крови и в других объектах. Хроматография помогла также при изучении энзиматических реакций и метаболизма аминокислот, галогени-рованных аминокислот и в других случаях. [c.202]

    Рассмотрению возможностей обратнофазовой гидрофобной хроматографии белков в основном посвящен сравнительно недавно опубликованный обзор [Rubinstein, 1979]. Основные его выводы совпадают с тем, что было сказано выше при рассмотрении обратнофазовой гидрофобной хроматографии пептидов. Для белков с молекулярной массой в интервале 12—30 тыс. Дальтон автор отдает предпочтение силикагелям, модифицированным октилсиланом (Са). В качестве органического компонента элюента, по его мнению, следует предпочесть градиент концентрации пропанола, вплоть до 40%-ной концентрации, если позволяет растворимость белка. Для получения узких пиков рекомендуется в качестве водного компонента использовать буфер высокой (примерно 1 М) концентрации, подавляющий ионное взаимодействие белка с силанольными группами матрицы. При pH 5—6 разрешение получается обычно хуже, чем при pH 4 (формиатно-пиридиновый буфер) или 7,5 (Na-ацетатный буфер). Существенно указание на то, что скорость элюции следует снизить до 60—90 мл/см Ч. Продолжительность фракционирования белков при этом остается относительно небольшой — 1—3 ч. Белки целесообразно разделить предварительно на группы [c.210]

    Последовательность аминокислотных остатков в белковой цепи называется ее первичной структурой. Определение первичной структуры производится путем частичного гидролиза белка с помощью протеаз, катализирующих расщепление пептидной связи лишь нежду определенными остатками. Так, трипсин режет лишь связи, образованные СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь пептидов — коротких фрагментов белковой цепи. Их идентификация производится посредством химических и физико-химических методов (хроматография, электрофорез). Воздействуя вторым ферментом, можно разрезать другие связи в белке и получить смесь других фрагментов (пептидов) и т. д. [c.33]

    Последовательность аминокислотных остатков в полипептид-,ной цепи называется ее первичной структурой. Определение пер.-вичной структуры производится путем частичного гидролиза белка с помощью специфических протеаз, катализирующих расщепление пептидной связи лишь между определенными остатками. Так, трипсин атакует лишь те пептидные связи, которые образованы СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь коротких полипептидных цепей, олигомеров. Такие короткие цепи называются пептидами. Их исследование производится посредством химических и физико-химических методов (хроматография, масс-спектроскопия). Воздействуя другим ферментом, можно разрезать белок по другим связям, получить смесь других пептидов. N- и С-конце-вые остатки белка (см. стр. 68) определяются в результате их химической модификации, предшествующей частичному гидролизу. Зная строение пептидов, полученных при специфическом расщеплении различными ферментами, можно установить первичную структуру белка. Допустим, что белковая цепь имеет структуру [c.73]

    В этой главе рассматривается жидкостная хроматография нитросоединений, мочевины и ее производных, гуанидинов, нит-розаминов, амидов, азосоединений и ароматических гидразосо-единений. Хроматография амидов описывается лишь кратко, так как практическая ценность хроматографического разделения пептидов и их смесей очень велика. Поэтому этим методам посвящена специальная глава [34]. Основной областью применения жидкостной колоночной хроматографии для других указанных соединений является отделение их от соединений других типов. Все современные методы хроматографии можно было бы с успехом применять для разделения разбираемых в этой главе соединений, однако до сих пор этому вопросу уделяли мало внимания. Интересный способ был разработан для нитросоединений, некоторые из них синтезируют непосредственно в хроматографической колонке, где они затем отделяются от других соединений реакционной смеси. [c.296]

    Области применения полиакриламидных гелей те же, что и сефадексов (см. разд. 28). Для обессоливания наиболее пригодны гели марок от Р-2 до Р-10. Гель Р-2 успешно применяют для обессоливания пептидов и нуклеотидов. Сорбционные свойства полиакриламидов используют при разделении основных белков, нуклеотидов, нуклеозидов и нуклеиновых оснований методом адсорбцион ной хроматографии (В о п i 11 аС. А., Anal. Bio hem., 1969, v. 32, No. 3, p. 522— 529). [c.63]

    СМ (карбоксиметил)-целлюлоза. Активные группы —ОСНаСООН, слабокислотные (рК = 3,5—4). Рабочая область pH > 4—5, оптимальное значение pH 6. Применяют для разделения нейтральных и основных белков (альбуминов, гемоглобинов, ферментов), основных аминокислот и пептидов, нуклеиновых кислот, липидов, гормонов, а также клеток и их фрагментов. Используют также для распределительной хроматографии в полярных растворителях. [c.160]

    В книге достаточно детально рассмотрены основные преимущества и недостатки классического метода определения аминокислотного состава белков с помощью ионообменной хроматографии по Муру и Стейну даны указания относительно выбора ионообменников, подготовки реактивов и численной интерпретации результатов. Значительное место также уделено изложению принципов анализа аминокислот методом газожидкостной хроматографии. Применение этого метода, обладающего на 2—3 порядка большей чувствительностью по сравнению с нингидринной реакцией по Муру и Стейну, позволяет значительно снизить количества белка, требуемые для определения его состава. Анализ аминокислот с помощью газожидкостной хроматографии пока еще не находит широкого применения, однако имеющиеся в ли-Фературе данные позволяют считать этот метод весьма перспективным. Кроме того, обсуждаются возможности использования газожидкостной хроматографии в сочетании с масс-спектромет-рией для определения состава и аминокислотной последовательности в пептидах. [c.4]

    Кинетика обмена в ионообменной хроматографии аминокислот и пептидов сильно зависит от температуры. Воспроизводимый контроль температуры колонки требуется для того, чтобы получить воспроизводимые последовательность и время выхода пиков, необходимые для идентификации аминокислот или пептидов и для разделения близких по свойствам соединений. Эти контролируемые условия обычно достигаются путем циркулирования воды из термостата по рубашке колонки. Термостат снабжается контрольным термометром. Емкость термостата, мощность нагрева и скорость подачи воды насосом должны быть достаточными для поддержания температуры в рубашке колонки с точностью 0,5 °С в диапазоне 30—70 °С. Одной из тонкостей программирования температуры является скорость повышения температуры при переходе от одной температуры к другой, как это предписывается многими методиками анализа. В тех случаях, когда по методике для данного прибора требуется смена температуры, которая происходит в течение 20 мин, любой другой температурный градиент может привести к нежелательным результатам. Поэтому неудивительно, что некоторые методики не удается воспроизвести на сходных приборах, если режимы изменения температур не одинаковы. Целесообразно включать градиентное термостатирование в основную кoн tpyкцию анализатора. [c.28]

    Особым направлением является хроматография гетеропептидов на ионообменных целлюлозах. Трудность проблемы здесь состоит в том, что пептиды могут быть построены из самых разнообразных аминокислот, так что в каждом частном случае приходится подбирать особые условия разделения, специфичные только для данной системы. И если при разделении основных или кислых полиаминокислот достаточно было градиентного изменения концентрации нейтральной соли, то в случае гетеропептидов приходится применять также и градиент pH, что в основном и приводит к разделению. [c.184]

    Электрофорез аминокислот и пептидов на бумаге проводили методом Михля с охлаждением инертными жидкостями [69], который может быть успешно использован даже для получения пептидных карт. Примеры разделения пептидов приведены на рис. 12.25, а состав буферов для разделения —в табл. 12.13. Аминокислоты и пептиды разделяли также методом электрофореза в тонком слое целлюлозы [28] и силикагеля [42]. В этом методе хроматография (в основном ТСХ) предшествует электрофорезу, который применяется для анализа во втором направлении (см. табл. 12.5). [c.333]

    Период с 1944 по 1954 г. был ознаменован развитием аналитических методов, современной техники разделения веществ, а также выяснением строения белков. Базой для дальнейшего развития и усовершенствования методики синтеза пептидов явилось введение в практику исследовательской работы хроматографии на бумаге, препаративной колоночной хроматографии, значительно более широкое применение электрофореза и противоточ-ного распределения и, наконец, выяснение структуры оксито-цина В. дю Винье и Г. Таппи и установление строения инсулина Ф. Сэнджером. После того как был успешно завершен синтез окситоцина, основные усилия исследователей были направлены на получение других биологически активных полипептидов. Это характерно для химии пептидов и на сегодняшний день. В течение всего лишь нескольких лет некоторые биологически активные полипептиды были синтезированы в таких количествах, что стало возможным проводить их фармакологическое и медицинское изучение. Эти соединения в настоящее время начинают находить терапевтическое при.менение. Синтез аналогов этих пептидов сыграл важную роль в понимании связи между строением и действием биологически активных полипептидов. [c.8]

    Для выделения циклического пептида из реакционной смеси раствор последней в воде или водном спирте пропускают последовательно через кислую и основную ионообменные смолы, которые абсорбируют все полярные побочные продукты. Очистку циклопептидов проводили также с помощью противоточного распределения [1215] и колоночной хроматографии на целлюлозе [1285]. Одним из самых существенных этапов идентификации продукта циклизации является определение его молекулярного веса. Для этого применяют метод изотермической перегонки в трифторуксусной [1285, 2018, 2533] или в муравьиной кислоте [2545], а также криоскопический метод. В последнем случае, кроме обычно используемых фенола и камфоры, предложено также применять диметилсульфоксид [2031, 2035] и ге-аминогек-сагидробензойную кислоту [1865, 1868]. [c.348]

    Иной подход к хроматографии пептидов на целлюлозных обменниках был предложен Янари с сотрудниками [8]. Еще в 1956 г. они описали фракционирование белков на целлюлозных ионитах системой Н2О—СОз- Позже эта же идея была применена к хроматографии небольших синтетических пептидов. Используя небольшое различие в прочности связывания пептида целлюлозным анионитом в ОН-форме, элюцию проводят сначала просто водой, а затем водой, насыщенной СО2 (при 1 атм). В некоторых случаях этот прием позволяет получить хорошее разделение. Так, можно разделить глицин, диглицин и триглицин, отделить тирозин от 1-лейцил-1-тирозина и даже разделить стереоизомеры (1-лейцил-1-тирозин и 1-лейцил-1-тирозин. Можно предположить, что связывание диполярного иона зависит от относительной основности аминогрупп анионита и диполярного иона. Так, на диэтиламиноэтилцеллюлозе сорбируемость возрастает в ряду аспарагин— цистеин—дикарбоновые кислоты. [c.185]

    Водорастворимые олигомеры. За исключением небольшого числа водорастворимых синтетических олигомеров, таких, как полиэтнленгликоли [381], поливиниловые спирты [382 ], полимет-акриловые кислоты [21 ], эксклюзионную хроматографию в водной среде в основном применяют для анализа водорастворимых, относительно низкомолекулярных природных соединений белков, пептидов [21], олигосахаридов 1383], лигнинов [384], фрагментов нуклеиновых кислот [21 ]. [c.201]

    Хроматограмма пептидов, полученных из триптического гидролизата глобина, приведена на фиг. 42. После удаления летучего буфера путем сгущения в вакууме пробу из каждого выделенного пика исследовали методом одномерной хроматографии на бумаге в системе бутанол — уксусная кислота — вода (4 1 5). Первыми элюируются пептиды из гомогената А, обладающие сильными основными свойствами, а также пептиды, содержащие три остатка триптофана нейтральные пептиды и многие гистидил-содержащие пептиды выходят из колонки при градиентном элюировании с 0,1 н. уксусной кислотой при градиентном элюировании 2 н. уксусной кислотой получают группу кислых пептидов. [c.91]

    Ричард [187] разработал методику двумерного разделения пептидов в одном направлении проводится хроматографическое разделение пробы, в другом — электрофорез. Адсорбентом служит силикагель G перед опытом предварительно выявляют лучший растворитель при разделении ферментативного гидролизата белков. Автор методики приводит список восьми систем растворителей. В качестве нейтральных систем можно использовать н-пропанол или 96 %-ный этанол и воду (7 3) в качестве основных систем — н-пропанол или 96 %-ный этанол и 34 %-ный гидроксид аммония (7 3) или хлороформ—метанол— 34 %-ный гидроксид аммония (2 2 1). К кислым растворителям относятся н-пропанол или 96 %-ный этанол—вода—уксусная кислота (7 2 1) или н-бутанол—вода—уксусная кислота (4 1 1). После выбора лучшего растворителя пробу подвергают хроматографическому анализу на тонкослойной пластинке размером 200x200 мм. Разделение предпочтительно вести методом восходящей хроматографии, однако при неудовлетворительном разделении можно прибегнуть и к непрерывному хроматографированию по методике Бреннера и Нидервизера [188] либо применить усовершенствованный прибор, описанный Ричардом. Пластинки затем удаляют и после 10-минутной сушки при 100 °С охлаждают и опрыскивают соответствующим буфе- [c.515]


Смотреть страницы где упоминается термин Пептиды основные, хроматография: [c.198]    [c.361]    [c.695]    [c.207]    [c.489]    [c.24]    [c.451]    [c.224]    [c.679]    [c.459]    [c.313]    [c.72]   
Аминокислоты, пептиды и белки (1976) -- [ c.196 ]




ПОИСК







© 2025 chem21.info Реклама на сайте