Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение амино- и гидроксильной групп

    Попытки провести полимераналогичные превращения поливинилбромида (замещение атомов брома амино-, ацето-, гидроксильными группами и т. д.) не увенчались успехом. Во всех случаях происходит лишь быстрое отщепление бромистого водорода. [c.276]

    Особый интерес представляют продукты 14, 16, поскольку их модификация путем замещения гидроксильной группы биогенным амином может приводить к аналогам известных противоопухолевых препаратов, содержащих фрагмент -МН-(СН2) -МЯ Я", 11, 17. Мы нашли, что эту модификацию можно проводить [c.108]


    Особую и весьма важную группу моносахаридов, значение которой-быстро возрастает в последние годы, составляют соединения, чрезвычайно близкие по структуре и химическому поведению к обычным альдозам и кетозам, состав которых, однако, отличается от С мОп-Сюда относятся так называемые дезоксисахара, т. е. моносахариды, которые отличаются от обычных представителей этого класса только-отсутствием одной или двух гидроксильных групп. Не меньшее значение имеют азотсодержащие моносахариды, так называемые амино-сахара — соединения, отличающиеся от обычных моносахаридов тем, что вместо части гидроксильных групп (чаще всего вместо одной из-них) содержат аминогруппу или какую-либо замещенную аминогруппу. В последнее время выделены многочисленные представители моносахаридов, которые являются одновременно дезокси- и аминосахарами. Особенно часто они встречаются в антибиотиках. Все эти, а также и некоторые другие моносахариды специфической структуры, по химическому облику соответствуют в общем моносахаридам однако они вместе с тем проявляют и ряд специфических свойств, что заставляет рассматривать их отдельно от нормальных моносахаридов. [c.9]

    Методом ацетилирования определяют первичные и вторичные спиртовые и фенольные гидроксильные группы. Третичные спиртовые и гидроксильные группы в 2,4,6-замещенных фенолах реагируют слабо. Определению мешает присутствие первичных и вторичных аминов и низших альдегидов вследствие взаимодействия их с уксусным ангидридом. Ацетилирование спиртовых гидроксильных групп в некоторых случаях проводят в присутствии катализаторов — хлорной или я-толуолсульфокислоты. [c.90]

    Как уже отмечалось, наличие гидроксильной группы в ароматическом кольце сильно увеличивает подвижность водородных атомов в орто- и пара-положениях относительной этой группы. Позтому фенолы со свободными орто-, мара-положениями легко обесцвечивают бромную воду и образуют продукты замещения, которые обычно выпадают в осадок. Перед анализом пробу фенолов растворяют в воде. Определению фенолов этим способом мешают амины, гидразины, непредельные соединения, которые также реагируют с бромом. [c.43]

    Скорость реакции представляет собой параметр, который можно использовать для анализа смесей. Так, определение ненасыщенности бромированием (см. с. 294) возможно благодаря тому, что скорость присоединения брома к двойной связи значительно больше скорости замещения. Другим примером может служить определение гидроксильной группы в присутствии аминов (см. с. 40) с помощью ацетилирования. Из гидроксисоединений получают сложные эфиры, а из аминов амиды последующее омыление эфиров не сопровождается гидролизом амидов, поскольку первые омыляются значительно быстрее последних. [c.623]


    Если в л<-положении бензольного ядра фенола содержатся сильные электронодонорные заместители, такие как аминная и гидроксильная группы, то карбоксилирование идет настолько легко, что оказывается достаточным кипячение с насыщенным раствором бикарбоната натрия При этом замещение происходит в соответствии с согласованным ориентирующим действием обоих заместителей и в менее затрудненное пространственно о-положение по отношению к гидроксильной группе [c.167]

    Как уже отмечалось, фенолы могут быть получены щелочным плавлением солей сульфокислот и нуклеофильным замещением галогена на гидроксильную группу (см разд 12 2 2), с помощью перегруппировок (см разд 12 1 3 2 и 14 3), диазореакций из соответствующих аминов (см разд 15 3) [c.263]

    Пиридоксин, или витамин В (адермин), был изолирован как витамин животных, влияющий на рост крыс. Одновременно было установлено, что он обладает стимулирующим эффектом в отношении роста микроорганизмов. Как и никотиновая кислота, пиридоксин является производным пиридина и существует в организмах в трех формах — пиридоксина (двухатомного спирта), пи-ридоксаля (с заменой одной спиртовой группы на альдегидную) н пиридоксамина (с замещенной аминной гидроксильной группой)  [c.128]

    Реакция замещения диазогруппы гидроксильной группой идет с хорошими выходами в тех случаях, когда диазосоединени получены из аминов, не содержавших в ядре заместителей второго рода. Наличие таких заместителей в орто- и паря-положении к аминогруппе увеличивает устойчивость диазосоединений. Известны соли ди азосоединений, которые не разлагаются в водных растворах даже при нагревании до температуры 100°, например, производные а-аминоантрахинона.  [c.457]

    Обозначение аминокислотных остатков и производных аминокислот. Принято обозначать замещения атома водорода в амино-, имино-, гуанидино-, окси- или тиольНой группе, а также замещения -ОН в карбоксильной группе с помощью свободной связи (черточки) в случае замещения водорода а-аминогруппы ее ставят слева от символа аминокислоты, в случае замещения в гидроксильной группе а-карбоксила — справа, если же замещение имеется в боковой цепи, то проставляется свободная связь сверху или снизу  [c.11]

    Реакция сопровождалась уменьшением интенсивности полосы поглощения валентных колебаний гидроксильных групп в области 3700—3500 см . Полоса поглощения валентных колебаний связи кремний — хлор не была обнаружена вследствие наличия интенсивных полос поглощения кремнезема в той области спектра, где можно было ожидать ее появления. Влияние хлорирования на адсорбционные свойства кремнезема отмечалось уже на стр. 244, где обсуждались исследования льюисовских кислотных центров в адсорбции. Замещение поверхностных гидроксильных групп атомами хлора сильно влияло на адсорбцию аммиака поверхностью кремнезема (Фолман, 1961). Адсорбция аммиака на необработанном пористом стекле также уже обсуждалась (стр. 239), где отмечалось, что адсорбционными центрами являются свободные гидроксильные группы и льюисовские кислотные центры. Адсорбция аммиака на хлорированном стекле сопровождается реакцией с поверхностными атомами хлора, в результате которой образуются поверхностные аминные группы и выделяется хлористый водород [c.309]

    Следует отметить, что, хотя при обработке 17а-эпимера соединения (122) азотистой кислотой и образуется некоторое колвсчество ожидаемого продукта сужения кольца (123), главным продуктом реакции является эпоксид (127) [186]. Возможно, что эпоксид (127) возникает не вследствие согласованного замещения кислородом гидроксильной группы азота в диазоние-вом ионе, для чего геометрия молекулы мало подходяща, а через промежуточное образование свободного карбониевого иона (при С-17). Подобный механизм был предложен для объяснения некоторых результатов, полученных при изучении дезаминирования ациклических аминов [187]. [c.360]

    При дальнейшей обработке полученного соединения р-металлилхло-ридом в тех же условиях снова происходит замещение водорода гидроксильной группы на металлил с образованием З-р-металлил-4-металлил-оксидифенил амина [c.89]

    Продукты хло[шрования высокомолекулярных парафиновых углеводородов. можно 1 ерерабатывать в ценное сырье и вспо.могательные материалы также частичным замещением хлора гидроксильными, амино-, алкокеильными, сульфгидрильными и т. д. группами. При этом в качестве побочного продукта образуются значительные количества олефиновых углеводородов. Учитывая, кроме того, присутствие непревращенного при хлорировании исходною парафинового углеиодорода, очевидно, что при таких процессах образуются весьма сложные смеси различных соединений. Подобные смеси можно с успехом применять [c.249]

    Довольно большое значение (большее, чем в жирном ряду) имеет реакция замещения гидроксильной группы фенола аминогруппой. Правда, в случае одноатомных фенолов такое замещение происходит с трудом простейший фенол СвНзОН образует значительные количества анилина СбНбЫНа и дифениламина СбН. ЫНСвН5 только при нагревании с аммиакатом хлористого цинка при 300 . Однако амини-рование многоатомных фенолов протекает гораздо легче. Резорцин превращается в лг-аминофенол при нагревании с концентрированным водным раствором аммиака уже при 200 , а аналогичная реакция с флороглюцином протекает даже при слабом нагревании  [c.539]


    В антрахиноновом ряду замещение гидроксильной группы находит значительное применение для получения разнообразных 1,4-ди-амино- и 1-амино-4-гидроксиантрахинонов из хинизарина и его производных. Для этого хинизарин восстанавливают до лейкосоедине-ния, стабильной таутомерной формой которого является 2,3-дигид-ро-9,10-дигидрокси-1,4-антрахинон. В последнем две кетогруппы постадийно аминируются аммиаком, первичными алкил- или арил-аминами, и лейкосоединение окисляется кислородом воздуха или другими окислителями, например нитробензолом до конечного продукта  [c.212]

    Приведенные факты показывают, что связи в нафталиновом ядре не так подвижны, как в ядре бензола, что они относительно более фиксированы, по крайней мере, в той части молекулы, в которой происходит замещение. Изучение свойств соединений с гидроксильными группами в обоих кольцах нафталина, показало, что оба ядра имеют одинаковый характер (Лотроп2, 1935). Так, 2,7-диоксинафталин IV сочетается с диазотированными аминами в положения 1 и 8, но если [c.451]

    К этим реакциям так называемого непрямого галоидирования относятся реакции замещения на галоид гидроксильной группы в спиртах и кислотах, алкоксильной группы в простых эфирах, кислорода в альдегидах и кетонах, карбоксильной группы в кислотах, аминогруппы в аминах, диазогруппы в ароматических диазосоединениях, М Х-группы в смешанных магнийорганических соединениях и, наконец, обмен галоида в галоидных соединениях. [c.190]

    Этот метод синтеза широко применяется для получения фенолов. Он имеет особенно большое значение при замещении в строго определенном положении. Поскольку соли диазония получают из аминов, которые в свою очередь обычно синтезируют из нитросоединений, применение этого метода дает уверенность в том, что гидроксильная группа будет находиться в том положении, в котором ранее находилась амино- или нитрогруппа. Для удаления избытка азотистой кислоты после диазотирования амина применяют мочевину [54]. Соли диазония, образование которых затруднено из-за низкой основности амина, можно получать в концентрированной серной кислоте с последующим осторол<ным разбавлением после диазотирования или растворять амин в серной кислоте, а затем перед диазотирова-Нием разбавлять этот раствор [55]. В первом из этих методов диазотирующим агентом служит нитрозилсерная кислота [561. [c.291]

    Наиболее сильное влияние на удерживание фенолов оказывает, как видно из хроматограммы, экранирование гидроксильной группы даже такой малообъемной и слабоэкранирующей группой, как метильная. За счет этого различия происходит четкое разделение на 3 группы орто -, орто - замещенные орто - замещенные с неэкрани-рованной гидроксильной группой (не имеющей орто - заместителей). Пример разделения аминных стабилизаторов — на рис. 2.2. [c.18]

    Полихлорбеизолы получают прямым хлорированием бензола 1—4] или заменой аминогруппы на хлор в хлорзаме-щенных ароматических аминах диазотированием (5—8]. Реже используют метод прямого замещения гидроксильной группы в фенолах на хлор действием галоидных соединений фосфора [5, 9—1,1], хлористого тионила и сульфурила [9], п-толу-олсульфохлорида [12—13]. [c.163]

    Известно (Уэйн,1960 Мельников Н. Н., Баскаков, 1962), что сама феноксикислота обладает слабой физиологической активностью. Замещение одного из атомов водорода в цикле на галоид резко повышает активность соединения. Наибольшей активностью обладают 4-галоидфеноксиуксусные кислоты. Моногалоидзамещенные фенок-сиуксусные кислоты по активности располагаются так хлор- фтор-бром-иод. Из дихлорфеноксиуксусных кислот наиболее активны соединения, содержащие галоид в положениях 2,4 2,5 3,4. Замена двух атомов водорода на хлор в положениях 3,5 или 2,6 резко снижает активность. Трихлорфеноксиуксусные кислоты по физиологической активности располагаются в следующий ряд 2,4,5-2,3,4-3,4,5-2,4,6-2,3,6. Активность соединений снижается с увеличением молекулярной массы радикала и при замене эфирного кислорода серой или аминны-ми группами (КН, МК). Для того, чтобы соединение обладало ростовыми свойствами, его молекула должна содержать карбоксильную группу или заместители, которые легко могут превратиться в карбоксил в тканях растений. Замена карбоксила кислоты на другие функциональные группы резко снижает активность соединений. Если гидроксильный кислород в карбоксильной группе заменить серой, то активность соединения существенно не изменится. Амиды, анили-ды и другие производные арилоксиалканкарбоновых кислот по физи- [c.115]

    X 10" М (имеются в виду концентрации гидроксильной группы в конечном растворе, для которого измеряется поглощение). Описанный метод применим для определения первичных и вторичных спиртов, а также третичного бутилового спирта, соединений с несколькими гидроксильными группами, сахаров, меркаптанов и фенолов с пространственно незатрудненной структурой. Пространственно незатрудненные первичные и вторичные амины взаимодействуют с уксусным ангидридом преимущественно с образованием замещенных амидов, которые реагируют с щелочным раствором гидроксиламина (реагент) гораздо медленнее, чем эфиры. Для смесей, содержащих более 10 мэкв спирта, коррекции результатов обычно не требуется. Определению мешают альдегиды и кетоны, имеющие те же концентрации, что и спирты. Возможно, это обусловлено ацетилированием этих соединений в енольной форме. [c.23]

    О вырожденности кода свидетельствует и исследование мутаций, как индуцированных химическими агентами, так и спонтанных. Азотистая кислота вызывает замещение аминной группы на гидроксильную  [c.261]

    По отношению к йодной кислоте и тетраацетату свинца аминосахара со свободной аминогруппой ведут себя как обычные моносахариды, так как а-аминогликольная группировка легко расщепляется обоими реагентами. Защищенная аминогруппа, так же как и защищенная гидроксильная группа, окислению не подвергается. Однако если замещенная амино- [c.273]

    Чрезвычайно интересные реакции замещения гидроксильной группы в тиосахарах можно осуществить через промежуточно образующийся циклический эписульфониевый ион. Таким способом, например, был синтезирован 2-амино-2-дезокси-3-тио-а-метил-0-альтропиранозид  [c.354]

    Замещение гидроксильной группы в спиртах и фенолах часто" достигается нагреванием с комплексным соединением хлористого цинка с аммиаком. Так, например, при нагревании этилового или метилового спирта с аммиакатом хлористого цинка приблизительно до 300° получается смесь первичных, вторичных и третичных аминов Фенолы в этих условиях образуют смесь первичных и вторичных ариламинов Если вместо аммиаката [c.122]

    В случае замещения гидроксильной группы в положении 2 на аминогруппу обычно используют тривиальные названия с окончанием озамин О-галактозамин для 2-амино-2-дезокси-В-галакто-зы В-глюкозамин для 2-амино-2-дезокси-В-глюкозы В-манноз-амин для 2-амино-2-дезокси-В-маннозы В-фукозамин для 2-ами-но-2,6-дидезокси-В-галактозы и т. д. (см. табл. 43). [c.285]

    Заменить аминогруппу в соединении X на гидроксильную группу действием азотистой кислоты не удается [786]. Это оказывается неожиданным, так как 3-аминохроманоны (XI) при диазотировании переходят в окси-хроманоны (XII) указанная реакция сопровождается также и. дегидратацией (XIII) [78а]. Если для проведения реакции был использован оптически активный амин, то при замещении имеет место рацемизация. [c.293]

    Одним из перспективных направлений изменения и целенаправленного регулирования сорбционных характеристик промышленных адсорбентов является химическое модифицирование их поверхности. В основе указанного процесса лежат химические реакции гидроксильных групп на поверхности твердофазной пористой матрицы (по механизму электрофильного или нуклеофильного замещения) с подводимыми к ним реагентами-модификаторами. Замещение гидроксилов или протона в гидроксилах на другие функциональные группы (аминные, сульфидные, фосфор-, ванадий-, хром-, титансодержащие и др.) позволяет в широких пределах регулировать активность сорбента по отношению к разным адсорбатам, создавать адсорбенты с избирательными характеристиками и с новыми свойствами. Среди новых методов модифицирования наиболее перспективным является метод молекулярного наслаивания, обеспечивающий поатомную химическую сборку на поверхности твердого тела мономолекулярных и многослойных поверхностньгх наноструктур. Аппаратурное оформление процесса молекулярного наслаивания в установках проточного типа и при пониженном давлении рассмотрено в 14.1. [c.43]


Смотреть страницы где упоминается термин Замещение амино- и гидроксильной групп: [c.460]    [c.215]    [c.17]    [c.151]    [c.616]    [c.665]    [c.1709]    [c.185]    [c.260]    [c.88]    [c.122]    [c.95]    [c.38]    [c.95]    [c.451]    [c.461]   
Смотреть главы в:

Химия и технология ароматических соединений в задачах и упражнениях -> Замещение амино- и гидроксильной групп




ПОИСК





Смотрите так же термины и статьи:

Амины замещение

Гидроксильная группа

Иод, замещение гидроксильных групп



© 2025 chem21.info Реклама на сайте