Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия и методы дегидрирования углеводородов. Катализаторы

    Начиная с 1913 г. Б. В. Бызовым проводились систематические исследования по изысканию возможностей использования нефти как сырья для синтеза исходных мономеров в промышленности каучука. В 1916 г. им был предложен метод получения диеновых углеводородов пиролизом углеводородов нефти в условиях обычного и пониженного давления или при разбавлении исходных углеводородов инертным газом. Позже была создана опытная полупромышленная установка для синтеза бутадиена этим методом (завод СК литер А). В условиях того времени оказалось невозможным преодолеть серьезные трудности, связанные с промышленным осуществлением способа Б. В. Бызова, и метод был временно оставлен. Позднее широкие исследования по превращению углеводородов нефти проводились Н. Д. Зелинским, А. А. Баландиным и другими. Особенно привлекала ученых проблема каталитического дегидрирования углеводородов с целью получения диеновых соединений. В результате в 40-х годах нашего столетия удалось найти условия и катализаторы реакций дегидрирования бутиленов в бутадиен с выходом, близким к теоретически возможному. [c.10]


    Рассматриваются процессы дегидрирования в производстве олефинов и диолефинов. Обсуждаются тенденции в изменении мирового потребления и производства олефинов и диолефинов. Освещаются основные этапы в области создания катализаторов и методов дегидрирования углеводородов, физикохимические основы реакций дегидрирования, определяющие технологическое оформление процесса, условия его проведения и природу катализатора. Дается краткое описание промышленных способов получения олефинов и диолефинов методами дегидрирования, проводится сравнение экономических показателей различных процессов. [c.53]

    Рассмотрим свойства некоторых промышленных катализаторов дегидрирования н-бутана до н-бутилена. Сравнительная оценка катализаторов, применяемых в промышленности для дегидрирования углеводородов, по многим причинам вызывает большие трудности, среди которых можно указать следующие не имеется данных по активности катализаторов при сопоставимых условиях их испытания (т. е. активности, определенной по стандартной методичке) отсутствуют многие важные показатели работы зарубежных катализаторов (например, технико-экономические) некоторые показатели работы катализаторов недостаточно хорошо проанализированы (наиболее экономичные технологические режимы, расходные коэффициенты и пр.). Поэтому приводимая ниже оценка различных катализаторов будет носить скорее качественный характер. [c.21]

    В отечественной промышленности первоначально применяли алюмоплатиновый катализатор АП-56, изготовленный на основе фторированного оксида алюминия и содержащий 0,55 масс. % платины. Катализатор эксплуатировали без предварительной гидроочистки сырья и получали катализат с октановым числом до 75 по моторному методу (ММ). В указанных условиях основной реакцией, приводящей к образованию ароматических углеводородов, была реакция дегидрирования нафтенов. [c.831]

    Научные работы относятся к химической кинетике н органическому катализу. Исследовал химию фосфора и его соединений. Изуча.л (193 0—1940) термодинамику и кинетику реакций каталитического превращения углеводородов с целью совершенствования промышленных методов переработки нефти. Установил количественные закономерности, связывающие константы скорости реакций с параметрами, характеризующими катя-лизатор, термодинамическими условиями и макрокинетическими факторами. Рассчитал условия равновесия реакций гидрирования и дегидрирования, гидратации олефинов и дегидратации спиртов, синтеза метана. Вывел кинетическое уравнение для каталитических )еакций в струе. Исследовал связь каталитической активности алюмосиликатных катализаторов с их составом, способом приготовления, кристаллической структурой. Разрабатывал статистические методы расчета термодинамических величин. [211, 290] [c.532]


    Весьма целесообразным оказывается применение для анализа таких продуктов метода селективного гидрирования исходного сырья над свежевосстановленным Ы1-кизельгуровым катализатором до насыщения непредельных соединений (при условиях, исключающих возможность гидрирования ароматических углеводородов и дегидрирования шестичленных цик-ланов). Режим селективного гидрирования, например, индиви- [c.41]

    Мультиилетная теория катализа рассматривает геометрическое и энергетическое соответствие между реагирующими молекулами и атомами твердого тела. На основании этой теории Баландин предлагает метод подбора катализаторов для органических реакций. На поверхности твердого тела реагирующие молекулы образуют различные связи. Наиболее распространены дублетные реакции, при которых компоненты реакции связываются с двумя атомами катализатора. В органических соединениях только определенные группы атомов образуют связи с катализатором. Напомним, что эти группы в мультиплетной теории названы индексными. Так, для реакции дегидрирования углеводородов индексной группой служит группа СН—СН, а катализаторы. этой группы — окислы хрома, ванадия и молибдена. Активность этих соединений объясняется тем, что расстояния между атомами в их кристаллических решетках соответствуют расстояниям между атомами индексной групны, В окислах других металлов, например алюминия и кремния, расстояния между атомами будут уже иными, поэтому они являются менее активными катализаторами, чем первая группа окислов, и реакция на них протекает в менее выгодных условиях, чем в первом случае. [c.100]

    Схема окислительного дегидрирования н-бутнлена изображена на рис. 144. Пар и воздух смешивают и перегревают в трубчатой печи 7 до 500 °С. Непосредственно перед реактором 2 в эту смесь вводят бутиленовую фракцию. Процесс осуществляют на стационарном катализаторе в адиабатических условиях при 400—500°С и 0,6 МПа. Тепло горячих реакционных газов используют в котле-утилизаторе 5 для получения пара (преимущество работы при повьшкнном давлении — для получения пара можно использовать тепло, выделяющееся при конденсации пара — разбавителя реакционных газов, в отличие от работы при атмосферном давлении при дегидрировании этилбензола и н-бутиленов). Затем газ охлаждают водой в скруббере 4 с холодильником 5 и промывают минеральным маслом в абсорбере 6. Там поглощаются углеводороды С4, а продукты крекинга, азот и остатки кислорода выводят с верха абсорбера и используют в качестве топливного газа в трубчатой печи /. Насыщенное масло из абсорбера б направляют в отпарную колонну 5, где регенерируется поглотительное масло, возвращаемое после охлаждения на абсорбцию. Фракция С4 с верха отпарной колонны 5 содержит 70% бутадиена. Из нее уже известными методами выделяют чистый бутадиен, а непревращенные н-бутилены возвращают на окислительное дегидрирование. [c.489]

    Общие методы. — Методами, обычно применяемыми для получения фенолов, ЯВЛЯЮТСЯ щелочная плавка сульфонатов (см. 20.7) или гидролиз солей диазония (см. 21.23). Обе реакции дают возможность получать фенолы нз углеводородов после предварительного сульфирования или нитрования. Третий метод, заключающийся в щелочном гидролизе арилгалогенидов, используется в промышленности для получения фенола из хлорбензола при высокой температуре и давлении и применим в обычных условиях только к высокоактивным полиннтрогалоидным соединениям. Четвертый метод, используемью только в особых случаях, состоит в дегидрировании гидроароматических кетонов нагреванием с палладием или с платиной в качестве катализатора  [c.280]

    В ее основу положено использование микрореактора газофазного дегидрирования (катализатор — 20%-ный Pt/ 100 меш.). В этих условиях хроматомасс-спектрометрического анализа (температура катализатора - 320° С хроматографирование в токе газа-носителя, являющегося смесью 95% гелия и 5% водорода) те компоненты смеси, которые являются циклогексановыми производными, не содержащими четвертичных С-атомов, и соединениями, в которых шестичленное кольцо не входит в состав мостиковых структур,, должны претерпевать дегидрирование с образованием ароматических углеводородов. Регистрация масс-спектров последних позволит судить о количестве дегидрируемых шестичленны х карбоциклов в исходных циклоалканах и получать новые данные об их структуре. Возможности метода будут продемонстрированы на примере MOHO- (VII—IX) и бициклических углеводородов (X—XVI) с известными масс-спектральными характеристиками [11]. [c.50]

    Вследствие такого многообразия анализировать продукты каталитического дегидрирования изопентана трудно и сложно. Однако точное знание состава количественного соотношения этих продуктов помогло бы более правильно выбрать катализатор и условия проведения реакции дегидрирования изопентана, а также определить технологические пути ее оформления. Но нет еще такого метода анализа катализата изопентана, которым можно было бы надежно устанавливать качественный и количественный состав катализата. В связи с этим в настоящем исследовании была сделана попытка использовать хроматермогра-фический метод для анализа углеводородных смесей состава 5. Для этой цели были получены чистые углеводороды и из них приготовлены искусственные смеси различного качественного и количественного состава. Анализ проводили на универсальном хроматермографе, разработанном Газовой лабораторией ВНИГНИ. В качестве сорбентов применяли алюмогель и диатомит с 25% дибутилфталата. Проявляющим газом служил воздух или азот. [c.287]


    При окислительном дегидрировании изоамиленов может использоваться как кислород, так и воздух. В зависимости от этого существенно меняется схема переработки контактного газа. Однако в любом случае при подаче с углеводородами только кислорода или только кислорода и азота условия дегидрирования оказываются слишком жесткими. Обычно вместе с сырьем подается водяной пар. Последний, по-видимому, как и в ряде других процессов, является не только разбавителем, но и оказывает некоторое специфическое влияние на окислительное дегидрирование олефинов [283]. Одновременно подача воды повышает безопасность проведения процесса и решает проблему отвода тепла реакции. Однако использование водяного пара приводит к повышению энергозатрат и поэтому степень разбавления сырья водой должна быть минимальной. К сожалению, применение известных в настоящее время катализаторов окислительного дегидрирования изоамиленов связано с необходимостью большого разбавления сырья водяным паром (см. табл. 28), что является одним из самых серьезных недостатков рассматриваемого метода. Селективность процесса существенно снижается с уменьшением степени разбавления. Так, при окислительном дегидрировании изоамиленов на фосфор-висмут-молибденовом катализаторе при 450 °С выход изопрена в расчете на превращенный олефин возрастает от 55 до 80% с увеличением мольного отношения Н2О изо-СаНщ от 1 до 20. [c.166]

    Метод очистки крекинг-бензинов путем контактирования нх в паровой или жидкой фазе с алюмосиликатным катализатором при повышенных (370—400°) или умеренных (320—350°) температурах был разработан в СССР В. С. Гутырей, М. А. Гончаровой и М. Ф. Кабановой [238]. Механизм алюмосиликат-ной каталитической очистки крекинг-дестиллатов сводится в основном к процессу перераспределения водорода дегидрирования—гидрирования циклических непредельных углеводородов параллельно в ароматические углеводороды и нафтены. Олефины с открытыми цепями гидрируются при этол в соответствующие парафины. С повышением температуры каталитической алюмосиликатной очистки выше 400° гладко текущий процесс необратимого катализа циклоолефинов начинает осложняться побочными реакциями и, прежде всего, реакцией каталитического распада олефинов. Каталитическая очистка над алюмосиликатами, помимо повышения химической стабильности, вызывает значительное увеличение октанового числа бензинов термического крекинга и реформирования. Этого не наблюдается при очистке бензина каталитического крекинга (который также облагораживается данным способом), поскольку углеводороды, входящие в его состав, уже подвергались воздействию алюмосиликатного катализатора, притом в более жестких температурных условиях. [c.248]

    Бифункциональные катализаторы (например, 0,5—1% Pt или Pd на АЬОз) менее активны и работают при 350—450 °С, когда равновесие не так выгодно для образования изопарафинов. В этом оформлении процесс становится похожим на описываемый ниже риформинг нефтепродуктов (стр. 76). Его проводят в адиабатическом проточном реакторе при 20—40 кгс/см (2—4 МПа) избытке водорода (мольное отношение водород углеводород от 2 1 до S 1). При этих условиях предотвращается развитие реакций дегидрирования парафинов и полимеризации олефинов, благодаря чему катализатор не загрязняется смолистыми веществами. Продукты реакции после конденсации и отделения от циркулирующего водорода подвергают ректификации затем непрореагировавший м-пентан возвр.ащают в цикл, а изопентан выделяют в виде товарного продукта. Степень превращения н-пентана за один проход через реактор составляет 50—60%, а общий выход изопентана более 90%. Сообщается о создании бифункциональных катализаторов, способных работать при пониженной температуре (100—250 °С). Их основой является обработанная специальным методом активная окись алюминия с нанесенной на нее платиной, однако точный состав и способ приготовления этого контакта неизвестны. [c.38]


Смотреть страницы где упоминается термин Условия и методы дегидрирования углеводородов. Катализаторы: [c.61]    [c.123]    [c.61]    [c.2272]    [c.393]    [c.476]    [c.466]    [c.466]   
Смотреть главы в:

Общая технология синтетических каучуков Издание 4 -> Условия и методы дегидрирования углеводородов. Катализаторы




ПОИСК





Смотрите так же термины и статьи:

Дегидрирование катализаторы

Дегидрирование условия

Катализаторы углеводородов



© 2025 chem21.info Реклама на сайте