Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюмосиликаты как механизм

    Равновесие смещается вправо только при 300—400 °С, причем для ускорения реакции требуются катализаторы кислотного тина (фосфорная кислота на носителе, оксид алюминия, алюмосиликаты, фосфаты). Механизм дегидратации состоит в такой последовательности обратимых превращений  [c.224]

    А. В. Фрост и сотрудники, однако, исследовали 1(е только механизм и кинетику перераспределения водорода, но и преобразование кислородных производных [34—38] углеводородов с целью подготовки материала для создания повой теории генезиса нефти на базе природного контакта смесей органических веществ с природными алюмосиликатами в недрах земли [39]. [c.158]


    При выявлении динамики перехода одной структуры в другую и вскрытии механизма этого явления были проведены следующие исследования [89—94,145—152]. Смесь, состоящую из КУОз и шариков алюмосиликата, помещали в муфельную печь на 20 ч при 750 °С. После окончания опыта оказалось, что алюмосиликат полностью растворился в КУОз. Описанный эксперимент модельно отражает то, что происходит в объеме пропитанного носителя при его термообработке. [c.88]

    Метод электронной микроскопии очень эффективен при исследовании структуры катализаторов, носителей, адсорбентов [78, 85, 86, 88, 89]. С использованием реплик, полученных разными способами, он дал возможность окончательно установить механизм трансформации структуры алюмосиликатов и силу-, катов под действием соединений ванадия [64, 90—92]. [c.310]

    Механизм действия кислотных катализаторов связан с образованием карбкатионов, которые инициируют реакцию. Галогениды и алюмосиликаты также обладают кислотными свойствами. Схема превращений в присутствии протонных кислот может быть описана уравнением  [c.321]

    Существенно отличается механизм процесса при использовании катализаторов на кислых носителях, например на аморфном или кристаллическом алюмосиликатах. В этом случае процесс гидрокрекинга может быть направлен в сторону глубокого разложения и изомеризации углеводородов сырья. Гидрирующая активность катализаторов гидрокрекинга зависит от их состава. Однако, как правило, в присутствии катализаторов на кислых носителях реакции гидрирования протекают в меньшей степени, чем на окисных или сульфидных катализаторах. [c.41]

    На особую роль глин как катализаторов этого процесса впервые указал наш известный физикохимик А. В. Фрост [22]. Еще в 1946 г. им были четко сформулированы основные типы реакций органических соединений (возможных предшественников нефтяных углеводородов), которые катализируются алюмосиликатами. С тех пор ыли проведены обширные исследования по моделированию естественных процессов нефтеобразования в лабораторных условиях. Результаты этих работ достаточно хорошо освещены в известных монографиях и статьях [23—27]. Поэтому здесь мы остановимся лишь на некоторых наиболее интересных моментах этих исследований, а главное внимание уделим новым работам в этой области, а также механизму реакций нефтеобразования. [c.194]

    Сильные кислоты способны отдавать протоны реагентам и принимать их обратно. К этому классу относятся обычные кислоты, галоиды алюминия, три< орид бора. Аналогичным механизмом каталитического воздействия обладают такие катализаторы, как алюмосиликаты, гамма-окись алюминия, магнийсили-каты, цирконийсиликат и подобные соединения, хотя вопрос о кислотном характере указанных соединений является спорным. Эти реакции происходят с образованием карбоний-ионного комплекса, возникающего путем перехода протона от катализатора к свободной электронной паре в органическом реагенте. В зависимости от условий реакции карбоний-ионный комплекс может взаимодействовать по реакциям алкилирования, крекинга, циклизации, перераспределения водорода, изомеризации, полимеризации и др. [c.312]


    Каталитическое действие галоидных солей алюминия и фтористых соединений, а также механизм изомерных превращений гомологов ароматических углеводородов g подробно рассмотрены в монографиях [3, 4]. Галоидные соли алюминия в промышленных установках изомеризации применения не нашли. Это объясняется их высокой коррозионной агрессивностью в присутствии влаги и сложностью регенерации. Применение в качестве катализатора фтористого водорода в смеси с трехфтористым бором позволило разработать эффективный процесс изомеризации. Однако наибольшее распространение в промышленной практике получили катализаторы на основе окиси алюминия и алюмосиликатов. [c.152]

    В случае крекинга олефиновых углеводородов существенных различий в мольных отношениях парафины олефины в продуктах для цеолитов и аморфного алюмосиликата не наблюдается (рис. 3.26). Предполагается, что изменения в составе первичных продуктов и более высокое отношение парафины олефины на цеолитах по сравнению с аморфным алюмосиликатом при крекинге парафинов связаны с изменением механизма образования карбокатиона на поверхности и с высоким адсорбционным потенциалом пор цеолита [5, ЗТ По мнению авторов [39], возможно, что образование карбокатиона на цеолитах про- [c.51]

    Существенно отличается механизм процесса при использовании катализаторов на кислых носителях, например на аморфном или кристаллическом алюмосиликатах. В этом случае процесс гидрокрекинга может быть направлен в сторону глубокого разложения и изомеризации углеводородов сырья. Реакции собственно гидрирования выражены в этом случае значительно слабее. [c.237]

    Данные табл. 108 свидетельствуют о сложном комплексе реакций, протекающих при гидрокрекинге, но все же наглядно показывают, что на катализаторах кислотного типа (никель — алюмосиликат, платина — цеолит) процесс идет в значительной степени по карбоний-ионному механизму. [c.237]

    Проведенные исследования [20] показали, что гексаметил-бензол крекируется на простых катализаторах, как сульфид никеля на алюмосиликате, образуя, главным образом, более низкокипящие ароматические углеводороды, изобутан и изопентан. Необычные выходы продуктов, получаемых при этой реакции, показаны на рис. 1, Эта реакция.внешне проявляется в отщеплении метильных групп от кольца слоями или парами. Поэтому ее предложили называть реакцией спаренно го отщепления . Был предложен механизм реакции, предполагающий многократное уменьшение и увеличение числа членов в циклических структурах, адсорбированных на кислотных центрах поверхности катализатора. Это чередование ре- [c.56]

    Таким образом, мы имеем дело с тремя важнейшими низкотемпературными реакциями (дегидрирование и др.), которые, по-видимому, специфичны для радиационных процессов это сочетание дополняется реакцией, направление и интенсивность Которой определяются присутствием катализатора. В случае платины это будет реакция гидрирования, которая при обычных температурах протекает по радикальному или молекулярному механизму, в случае алюмосиликата — реакция изомеризации, которую обычно считают процессом, протекаюш им по ионному механизму, т. е. через промежуточное образование карбоний-ионов. [c.155]

    Многие годы механизм действия окиснохромовых катализаторов был неясен. Эрих и Марк [171] предполагали катионный механизм, исходя из структуры полимера. Отличие окиснохромовых катализаторов от классических катализаторов Циглера— Натта состоит в том, что они полимеризуют этилен в отсутствие активаторов, в частности АОС. При нанесении на алюмосиликат или силикагель хрома в количестве, отвечающем оптимальной активности катализатора, после активации были обнаружены соединения хрома, в которых хром имел различную степень окисленности Сг +, Сг +, Сг +, Сг +. Неясным оставалось, [c.161]

    Если исходить иэ убеждения, что механизм каталитического действия твердых тел в однотипных реакциях будет определяться химической природой катализатора, то становится понятной целесообразность одновременного обсуждения каталитических свойств, например, катионных форм Отолитов, алкоголятов или гидроксидов щелочных металлов, аморфных алюмосиликатов и сверхкислот в указанных выше реакциях окислительно-восстановительного типа. [c.117]

    Заведующий W. А. Т. Масеу Направление научных исследований химия алюмосиликатов механизм реакций производных циклогексана и нонана. [c.270]

    Если предположить, что над алюмосиликатами происходит подобная изомеризация олефинои в нафтены и при более высоких температурах (выше 3,50 С), то отпадает необходимость объяснять механизм каталитической очистки процессом гидрирования, так как изомеризатщя олефинов в соответствующие нафтены не должна сопровождаться снижением выходов бензиновой фракции и в то lite время может приводить к резкому уменьшению йодного числа, т. е. внешне будут наблюдаться те н е явления, какие и имеют место при каталитической очистке. Однако мы не располагаем прямым доказательством преимущественного протекания реакции гидрирования олефинов или реакции изомеризации олефинов в нафтены. [c.111]


    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    Механизм и кипетт1ка крекпнга углеводородов и кислородных производных углеводородов над синтетическими алюмосиликатами изучены К. В. Топчиевой и Г. М. Панченковым [30—33], Р. Д. Оболенцевым и со-тругитиками [40—46]. Важные данные по превращ( пиям углеводородов в присут( твин катализаторов получены А. Ф. Платя и А. Д. Петровым [47-49]. [c.158]

    При платформинге интенсивно протекают реакции изомеризации парафинов и нафтенов и гидроизомеризации олефинов. Это вызвано тем, что катализаторы нлатформинга относятся к числу так называемых нолифункциопальных (бифункциональных) катализаторов они катализируют одновременно реакции, протекающие по катионному механизму, свойственные кислым катализаторам, и реакции гидрирования-дегидрирования, характерные для металлических и окиснометаллических катализаторов. Бифункциональный катализатор состоит из алюмосиликата (нлн активированной кислотами окиси алюминия), содержащего небольшое количество одного из металлов VIII группы (Р1, Р(1, N1 г( др.). При умеренных темнературах порядка 300—350° С среди реакций, происходящих над бифункциональными катали-зато])ами нод давлением водорода, преобладают реакции изомеризации. [c.493]

    Следуюпцш этапом усовершенствования катализатора гидрогенизационных процессов было повышение их гидрообессеривающей активности за счет оптимизации природы исходных реагентов (катализаторы ГО-30-7, ГО-70), увеличения содержания гидрирующих металлов (катализаторы ГО-116, ГО-117), а также введения структурных и химических модификаторов - гидроксилированного кремнезема, алюмосиликата (ГС-168 ш) или синтетических цеолитов (ГК-35). При этом технология приготовления основывалась на наиболее простой технологии соэкструзии соединений гидрирующих металлов. Что касается механизма процесса гидроочистки, то Л.Шунт и Б.Гейтс вначале представляли его в виде образования шпинели А о04 на поверхности носителя у [c.174]

    В последние годы большое внимание уделяется изучению механизма образования промежуточных комплексов и их структуры при контакте с гетерогенными катализаторами — оксидами, сульфидами, цеолитами. В работе [10] рассмотрен механизм активации пропилена и последующее алкилирование бензола при использовании алюмосиликатов. Авторы считают, что каталитическими центрами являются полиэдры типа [АЮ4] , [АЮз] и [А10б] , имеющие вакантные или малозаселенные Зй(-орбитали, способные к заполнению электронами с молекулярных орбиталей возбужденных молекул пропилена и бензола. [c.69]

    Псевдографитная фаза кокса на оксидных катализаторах и алюмосиликатах имеет структуру поликристаллических графитов, образованных пачками молекул карбоидов [6]. Вследствие значительной стихийности формирования псевдографитного кокса он образует экранирующие слои. В промышленных условиях и на катализаторах, закоксованных по механизму карбидного Щ1кла, кокс состоит преимущественно из поли-кристаллического графита [3, 8]. [c.10]

    Различие в скоростях выделения оксидов углерода при окислении одинакового количества кокса на катализаторах крекинга разной начальной закоксованности обусловлено стадийным механизмом протекания этого процесса. Впервые стадийный механизм окисления кокса на катализаторах крекинга предложен в работе [89]. Авторы наблюдали в начальные моменты обработки кислородсод жащим газом закоксованного аморфного алюмосиликатного катализатора при температурах ниже 460 С увеличение его массы. По аналогии с осшслением угля в этой работе предложена двухстадийная схема окисления кокса на алюмосиликатах. [c.30]

Рис. 36. Схема механизма трансформации структуры алюмосиликата под действием KVO3 Рис. 36. <a href="/info/65242">Схема механизма</a> трансформации <a href="/info/642001">структуры алюмосиликата</a> под действием KVO3
    Применение соединений. Соединения алюминия находят разнообразное применение. Природные алюмосиликаты (глины) — основное сырье для производства фарфора, фаянса, гончарных изделий, огнеупоров (см. гл XV, 2). Искусственные рубины нужны для квантовых генераторов (лазеров) и в качестве опорных камней для точных механизмов. При дегидратации гидроксида алюминия А1(0Н )з образуется алюмогель, который, как и силикагель, служит в технике адсорбентом. Сульфат алюминия А12(804)з I8H2O используется для очистки (осветления) воды, так как при подщелачивании раствора образует рыхлые хлопья А1(0Н)з, которые хорошо поглощают взвешенные примеси. Алюмокалиевые квасцы применяют в текстильной промышленности как протраву при крашении тканей, в бумажной промышленности — при проклеиванйи бумаги, в производстве лайковой кожи в качестве дубителя, так как ионы Al " (как и ионы Сг " ") способны взаимодействовать с белковыми молекулами. Ткани и дерево, пропитанные раствором квасцов, приобретают огнестойкость. В медицине их применяют как средство, оказывающее вяжущее, подсушивающее и дезинфицирующее действие на слизистые оболочки и на кожу. Свое название квасцы получили еще в XV в. за вяжущий и кислый вкус. [c.311]

    Реакция получения меркаптанов через олефины сходна с процессом прямой гидратации олефинов. Процесс осуществляют в присутствии катализаторов (протонных кислот, алюмосиликата, окиси алюминия и др.) или по радикальноцепному механизму. Присоединение проходит в соответствии с правилом Марковникова  [c.435]

    Особенно велика и оригинальна роль алюмосиликатов в осуществлении нроцеееов нерераепределения водорода и одновременном низкотемпературном образовании насыщенных и ароматических углеводородов. Подробно механизмы таких реакций были изложены нами в монографии [24]. [c.194]

    Изучению преобразований стеролов и станолов на ранних стадиях диагенеза посвящено в последние годы достаточно большое числоработ (см., например, [38,41]). Существуют различные взгляды на механизм реакций превращения стероидов. В литературе обсуждаются глав-ным образом два фактора, преобразующие биологические молекулы в осадках. Это воздействие микроорганизмов и воздействие алюмосиликатов (глин). Ясно, что первый фактор имеет наиболее важное значение для понимания процессов, происходящих в диагенезе, тогда как воздействие алюмосиликатов, протекающее при повышенных температурах, относится к области катагенеза органического вещества. Не обсуждая здесь подробности работ, связанных с изучением воздействия микроорганизмов, укажем все же, что главной реакцией в диагенезе является восстановление стеролов в станолы [42, 43]. [c.209]

    Гидрокрекинг (деструктивное гидрирование, гидродеалкилиро-вание), а также гидроочистка обычно осуществляются на бифункциональных катализаторах, активных как в реакциях гидрирования, так и в реакциях крекинга. Крекирующую функцию катализатора обеспечивают соединения кислотного характера, направляющие реакцию по карбкатионному механизму (окись алюминия, алюмосиликаты, цеолиты), а гидрирующую — в основном металлы VIII группы (Fe, Со, Ni, Pt, Pd и др.). [c.293]

    Некоторое время в качестве катализатора полимеризации бутиленов использовали серную кислоту. Полимеризующее действие оказывают также фтористоводородная кислота, фтористый бор, алюмосиликаты, хлористый алюминий. Установлено, что реакции полимеризации на кислотных катализаторах протекают по карбо-ний-ионному механизму . Так, в результате присоединения одного протона к молекуле пропилена образуетс 1 карбоний-ион он присоединяет новую молекулу пропилена с образованием карбоний-иона гексена, который затем стабилизируется в соответствующий олефиновый углеводород. [c.321]

    Хи.мическим методам очистки нафталина посвящена обширная патентная литература [10]. В полупромышленном и промышлен-ном масштабах испытаны методы, ооновывающиеся либо на селективном расщеплении тиофенового кольца под действием хлорида алюминия [11], металлического натрия [12], алюмосиликатов [13], хлора и других окислителей [14], либо селективного сульфирования, алкилирования или конденсации тионафтена с альдегидами. Два последних процесса протекают по карбоний-ионному механизму при использовании серной кислоты и сульфокислот в качестве катализатора. [c.285]

    Активными компонентами катализаторов для прямого гидрообессеривания нефтяных остатков служат Ni, Со, Мо и W носителями— окиси алюминия и кремния, природные и синтетические алюмосиликаты. Носитель играет важную роль в механизме отложения кокса и металлов на поверхности катализатора. С увеличением активной поверхности, объема и радиуса пор гидрообессеривание улучшается, однако высокопористые катализаторы малопрочны. Интересны сообщения [153, 154] о том, что можно рассматривать как гидрирующий катализатор. Автор утверждает, что при щелочной обработке такой окиси алюминия образуются активные центры двух типов активный железный центр, вызывающий диссоциацию молекулы водорода окисноалю-миниевый центр (вероятно, льюисовская кислота), который может адсорбировать ненасыщенные углеводороды. Процесс гидрирования, по-видимому, протекает с переносом водорода между указанными центрами. [c.255]

    На аморфном алюмосиликате и цеолите СаХ наблюдается высокий выход разветвленных углеводородов и повышенная средняя молекулярная масса продуктов (меньше углеводородов —С2), т. е. состав продуктов соответствует карбоний-ионному механизму реакции. Вместе с тем цеолит СаХ проявляет большую активность по сравнению с аморфным алюмосиликатом, и в продуктах крекинга снижается содержание олефинов (особенно С5), повышается содержание нзопарафинов, т. е. отношение парафины олефины растет, и увеличивается средняя молекулярная масса. [c.48]

    Реакции алканов протекают в жестких условиях (температура, облучение, катализаторы) преимущественно по радикальным механизмам. Гетеролитические превращения алканы претерпевают лишь в присутствии катализаторов (алюмосиликатов, H2SO4, BFa и т. д.) и добавок, способных генерировать карбониевые ионы (спиртов, олефинов). Карбкатион способен атаковать алкан, вырывая гндрнд-аии-оп (Н )  [c.55]

    В настоящее время большинство исследователей склонно рассматривать механизм реакций каталитического крекинга с точки зрения карбо-пий-ионного механизма, т. е. признания кислой природы активной поверхности катализатора [101, 102]. Согласно этим представлениям промежуточные ионы, образовавшиеся в результате внутримолекулярной перегруппировки, подвергаются реакциям изомеризации и дальнейшему распаду с образованием в качестве конечных продуктов углеводородов с тремя, четырьмя и пятью атомами углерода. Характерной особенностью газов каталитического крекинга является превалирующее (до 90%) содержание углеводородов Сз и С4, в то время как в газах термического крекинга преобладают углеводороды i и j. Это объясняется тем, что распад углеводородов по ионному механизму протекает в отличие от распада по радикальному механизму, как правило, только до пропилкарбониевого иона, так как метил- и этилкарбониевые ионы образуются с большим трудом. Для радикального механизма термического распада характерно отсутствие вторичных реакций изомеризации и циклизации. Однако наличие протонов на поверхности алюмосиликатных катализаторов и кислая природа поверхности алюмосиликатов экспериментально однозначно не доказаны. Многие исследователи развивают другие представления о природе активных центров алюмосиликатных катализаторов [103]. [c.82]

    Относительно механизма отравления катализаторе АС существует несколько точек зрения. В первых исследованиях [120] высказано иредноло кеиие, что, поскольку активная часть поверхности, например, алюмосиликата имеет кислый характер, АО должны ее нейтрализовать [c.171]

    Исследовались каталитические свойства многочисленных сильных кислот фтористого водорода, фтористого бора, галоидсульфоновых кислот, этансульфоновой кислоты и др. Однако ббльшая часть экспериментальных данных, используемых для выяснения механизма изомеризации насыщенных углеводородов, была получена с применением хлористого и бромистого алюминия, серной кислоты и алюмосиликатов. Поэтому рассмотрение реакций изомеризации, катализируемых сильными кислотами, будет ограничено реакциями, протекающими на перечисленных четырех катализаторах. По тем же причинам обсуждение изомеризации в присутствии гидрирующих катализаторов на кислотных носителях будет ограничено реакциями, протекающими в присутствии платины на содержащей галоид окиси алюминия, никеля на алюмосиликатах и алюмомолйбденового катализатора. [c.88]

    Природа кислотности, обусловливающей каталитическую активность алюмосиликата, четко не установлена [70]. Катализатор может быть протоновой кислотой или кислотой Бренстеда или Льюиса, но механизм изомеризации после образования карбоний-иона такой же, как в присутствии серной кислоты. Инициатор карбоний-ионов может образоваться в результате или отнятия гидридного иона от углеводорода кислотным катализатором, или образования алкена как продукта крекинга с последующим присоединением к этому алкену протона кислоты. ,,  [c.99]

    КАТАЛИТИЧЕСКИЕ ЯДЫ, частично или полностью подавляют активность катализаторов. Обычно к К. я. относят в-ва, отравляющие> катализатор даже при незначит. их содержании в сырье. Механизм действия К. я. сводится к хемосорбции их молекул на активных центрах катализатора или хим. взаимодействию другого типа. Отравление катализатора м. б. обратимым, т. е. возможно восст. активности катализатора путем его обработки к.-л. в-вами. Действие К. я., как правило, весьма специфично яды, отравляющие одни катализаторы, инертны по отношению к другим. Так, сернистые соед. — сильные яды для платиновых катализаторов гидрирования, но. не влияют на активность алюмосиликатов при крекинге. Специфичность К. я. проявляется также в избцрат. отравлении катализатора одной из неск. протекающих на нем р-ций. [c.248]

    Окисление метана в формальдегид исследовалось на различных кислотных катализаторах, включая силикагель [396], в том числе с добавками оксидов щелочных и щелочноземельных металлов [397], алюмосиликаты [398—400], обработанные также различными кислотами [401], фосфаты металлов [401,402]. Механизм реакции окисления метана на кислотных катализаторах включает образование радикалов НОг и КОг [396]. При этом кинетика процесса соответствует параллельной схеме образования продуктов мягкого и глубокого ок 1сления [402]. Установлено, что избирательность по формальдегиду возрастает с увеличением прочности связи кислорода с пове йшостью катализатора [402]. [c.129]


Библиография для Алюмосиликаты как механизм: [c.366]   
Смотреть страницы где упоминается термин Алюмосиликаты как механизм: [c.117]    [c.15]    [c.51]    [c.159]    [c.203]    [c.52]    [c.244]   
Гетерогенный катализ (1969) -- [ c.371 , c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Алюмосиликаты



© 2025 chem21.info Реклама на сайте