Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Идентификация продуктов разделения метод

    Вся органическая химия посвящена установлению строения органических соединений и синтезу их на основании знания-строения и типичных реакций образования различных связей. Мы познакомились уже с идеей установления строения соединений химическими методами, которые и сейчас являются основными, но все больше дополняются физическими методами. Пытаясь сформулировать сущность химических методов установления строения в одной фразе, можно сказать, что они состоят в констатации родственных связей серии веществ (веществ с родственной структурой) и в выяснении строения одного или нескольких узловых веществ этой серии путем их постепенной деструкции (или, как ее иногда называют, деградации). Такой химический путь позволяет установить строение любого сколь угодно сложного вещества, однако ценой большого труда. И этот большой труд все более облегчается благодаря новым физическим методам разделения и идентификации продуктов деградации, особенно благодаря различным видам хроматографии (стр. 38). Одновременно и методом деградации и методом идентификации осколков молекулы (по их молекулярному весу) служит масс-спектрометрия (стр. 589). Разнообразные, все более развивающиеся физические методы в состоянии сильно облегчить задачу химика. Некоторые из этих методов дают возможность установить такие важные детали структуры, как характер связи, межатомные расстояния и углы, наличие или отсутствие того или иного рода взаимодействия электронных орбиталей, подобного сопряжению, наличие [c.341]


    Идентификация продуктов гидролиза полисахаридов (см. гл. 14) начинается с исследования полученной смеси моносахаридов методом хроматографии на бумаге. В результате такого исследования могут быть получены очень цепные сведения о природе образовавшихся моносахаридов в ряде случаев с успехом применяются и другие виды хроматографии (тонкослойная, газо-жидкостная). Необходимо отметить, что идентификация только с помощью хроматографических методов в настоящее время невозможна, так как, во-первых, неизвестный или редко встречающийся моносахарид может быть подобен по хроматографическому поведению в избранных условиях какому-либо более распространенному представителю моносахаридов во-вторых, по данным хроматографии нельзя пока отнести моносахарид к О- или -ряду. Все это вынуждает полученные при гидролизе моносахариды после хроматографического разделения выделять в кристаллическом состоянии или переводить в кристаллические производные.  [c.493]

    При анализе сложных смесей углеводородов, где чисто химические методы находят ограниченное применение, особое значение имеют методы физические и, в частности, рефрактометрические. Кроме упомянутых выше общих приемов рефрактометрического анализа, для нефтяных фракций был разработан ряд специальных методов, не имеющих пока аналогий в рефрактометрии других материалов. К их числу относятся дисперсиометрические методы [238—250], требующие измерения рефракционной дисперсии. Все парафиновые и нафтеновые углеводороды характеризуются очень близкими значениями удельной или относительной дисперсии. С другой стороны, ненасыщенные и ароматические з глеводороды, резко отличаясь от насыщенных по величине дисперсии, имеют разные значения дисперсии в зависимости от молекулярного веса, числа и взаимного расположения кратных связей и ароматических колец. Эти свойства дисперсии делают измерение ее весьма полезным при хроматографическом разделении сложных углеводородных смесей и идентификации продуктов разделения, а также при гидрировании нефтяных фракций — для контроля полноты гидрирования. [c.54]

    К числу таких методов относятся дисперсиометрические методы [57], требующие измерения рефракционной дисперсии. Все парафиновые и нафтеновые углеводороды характеризуются очень близкими значениями удельной или относительной дисперсии. С другой стороны, ненасыщенные и ароматические углеводороды, резко отличаясь от насыщенных по величине дисперсий, имеют разные значения дисперсии в зависимости от молекулярного веса, числа и взаимного расположения кратных связей и ароматических колец. Эти свойства дисперсии делают измерение ее весьма полезным при хроматографическом разделении сло.жных углеводородных смесей и идентификации продуктов разделения, а также при гидрировании нефтяных фракций — для контроля полноты гидрирования. [c.116]


    Для установления химического строения выделенных индивидуальных полисахаридов используется ряд химических методов, основанных на реакциях деструкции с изучением ее продую-ов метилирование с последующим гидролизом периодатное окисление частичный кислотный гидролиз контролируемый ацетолиз ферментативный гидролиз щелочная деполимеризация. Для разделения и идентификации продуктов деструкции используют хроматографические методы (хроматография на бумаге, тонкослойная хроматография и газо-жидкостная), в том числе в комбинации с масс-спектроскопией и др. [c.282]

    Для познания природы твердых горючих ископаемых получили значительное развитие методы окислительной деструкции с дальнейшим разделением и идентификацией продуктов. В настоящей работе для изучения природы балхашита использован метод ступенчатого озонирования в ледяной уксусной кислоте, предложенной для деструкции керогена горючих сланцев [2], выяснена возможность деструкции балхашита иод действием озона, определены выход и элементный состав продуктов. [c.69]

    Хроматографическое разделение продуктов взаимодействия окиси этилена и окиси пропилена-с алкилфенолами, жирными спиртами и кислотами в тонком слое адсорбента по сравнению с разделением методом газо-жидкостной хроматографии методически и в аппаратурном отношении более просто и позволяет анализировать соединения с большим числом присоединенных оксиалкильных групп. К недостаткам метода тонкослойной хроматографии следует отнести в общем полу-количественный характер получаемых результатов, а также менее четкое по сравнению с газо-жидкостной хроматографией разделение на компоненты продуктов оксиалкилирования с невысокой молекулярной массой. Однако разделение методом тонкослойной хроматографии эффективно для быстрой оценка воспроизводимости параллельных опытов оксиалкилирования, для идентификации продуктов оксиалкилирования и определения их молекулярно-массового распределения. [c.218]

    Научные работы посвящены ядерной физике и ядерной химии, органической геохимии и микробиологии. Один из пионеров исследования трансурановых элементов. Совместно с Э. М. Макмилланом открыл (1940) нептуний-239 при бомбардировке урана нейтронами. Выполнил исследования, связанные с идентификацией продуктов деления урана. Предложил (1940) применять метод термодиффузии для разделения изотопов урана. [c.8]

    Наряду с анализом индивидуальных соединений и технических продуктов, разработаны методы как непрерывного элементного анализа соединений, предварительно разделенных на хроматографической колонке, так и отдельных фракций, отбираемых в процессе хроматографического разделения. Такой анализ дает ценную информацию по качественной идентификации компонентов анали- [c.133]

    TOB по методу ПГХ необходимо, по мнению Крейтона [15], провести дополнительные измерения, связанные с определением оптимальной характеристической температуры пиролиза и с определением оптимальных условий разделения образующихся продуктов. Однако такой вывод представляется нам несколько односторонним, так как он, например, не учитывает принципиально больший объем информации, который можно получить в результате газохроматографического анализа и идентификации продуктов пиролиза. Однако полученные Крейтоном результаты, по нашему мнению, представляют общий интерес. Они свидетельствуют о перспективности проведения пиролиза в условиях программированного повышения температуры. [c.89]

    В заключение отметим, что еще не созданы предпосылки для действительно автоматического анализа последовательности нуклеотидов, поскольку разработанные методы и аппаратура позволяют автоматизировать только часть процессов — разделение и идентификацию продуктов расщепления (см. Разделение низкомолекулярных компонентов нуклеиновых кислот ). [c.94]

    Необходимо указать еще на один метод разделения продуктов ядерных реакций — с помощью масс-спектрометра [9]. К преимуществам этого метода следует отнести возможность однозначной идентификации продуктов реакции по массовым числам, а также возможность определения выходов стабильных и слишком долгоживущих изотопов. Кроме того, он позволяет раздельно определять выходы изотопов одного и того же элемента, обладающих близкими радиоактивными характеристиками. Однако практическое осуществление этого метода требует достаточно сложной аппаратуры, работы с высоким вакуумом и т. п. [c.644]

    Чтобы показать успешно улучшенные результаты работы в этом направлении, для качественного анализа пробы продуктов прямой гонки калифорнийской нефти с конечной точкой кипения 227°С колонка длиной 3,3 м была заменена колонкой длиной Юме последующим переводом выделенных методом газовой хроматографии фракций в масс-спектрометр. Полученная хроматограмма представлена на рис. 13, где результаты идентификации масс-спектральным. методом обозначены снизу шкалы. Составы данной и описанной ранее проб аналогичны поэтому при изучении ко.мпонентов и Св можно сделать вывод, что разделение действительно улучшилось. [c.188]


    Эффективным оказалось применение независимой аналитической идентификации продуктов хроматографического разделения и сочетание газовой хроматографии с другими методами исследования ИК-спектроскопией и масс-спектрометрией, а также использование селективных и последовательно работающих детекторов. Методом масс-спектрометрии можно проводить непрерывный качественный анализ компонентов смеси и для анализа бывает достаточно самых небольших количеств вещества. Такой комбинированный метод получил название х р о м а т о -масс-спектрометрии. Возможно использование также методов ядерного магнитного резонанса, пламенной фотометрии, абсорбционной спектроскопии и других, включая химические методы. [c.333]

    На основе окисленных образцов деароматизированной фракции парафино-нафтеновых углеводородов (масло С-220) и изготовленных па этой же дисперсионной среде образцов смазки (10% стеарата лития) изучена возмон<ность выделения продуктов окисления методами экстракции и жидкостной хроматографии с последующей идентификацией методом ИК-спектроскопии. Показано, что в условиях хроматографирования можно осуществить выделение и анализ продуктов окисления непосредственно из смазок. Сравнение жидкостных хроматограмм разделения одинаковых по весу проб масел дает наглядное представление о динамике изменения содержания концентратов различных продуктов окисления в зависимости от условий окисления. [c.109]

    Параллельное соединение двух колонок переключающим краном, одним пиролизером и одним детектором (рис. 7.IV). В такой схеме имеется возможность поочередной работы на двух колонках с разными сорбентами, что может быть использовано как при идентификации высокомолекулярных соединений на основе разных фракций продуктов пиролиза, так и при идентификации самих продуктов пиролиза методом разделения на неподвижных фазах разной полярности. [c.31]

    Идентификация продуктов пиролиза в простейших случаях может быть выполнена с помощью известных методов хроматографической идентификации [35, с. 186-205]. Однако из-за сложности продуктов пиролиза идентификация с использованием различных приемов хроматографического разделения становится ненадежной. Поэтому наиболее эффективным является применение в качестве детектора в ПГХ масс-спектрометра [82]. [c.78]

    Оценка микроструктуры путем воссоздания строения макромолекул по продуктам пиролиза является более трудоемким процессом, для этого требуются определенные условия пиролиза и детальное разделение образующихся соединений, включая изомеры. Необходима также идентификация продуктов пиролиза, для чего могут быть привлечены не только известные методы хроматографической идентификации, но и другие физико-химические и химические методы и специальные приемы. Наиболее эффективным и информативным методом идентификации летучих продуктов пиролиза является масс-спектрометрия. [c.182]

    На этих особенностях растворимости отдельных групп продуктов окисления основаны методы их отделения друг от друга. Следует подчеркнуть, что разделение и идентификация продуктов окисления — задача более сложная, чем изучение строения углеводородов. Дополнительные трудности на этом пути обусловлены относительно малой устойчивостью некоторых продуктов окисления, которые, окисляясь, превращаются в соединения других типов. Кроме того, большинство конечных продуктов окисления углеводородов относится к числу достаточно сложных высокомолекулярных соединений, носящих часто полимерный характер, изучить строение которых пока еще не представляется возможным. Известные успехи в области изучения состава продуктов окисления достигнуты при применении комбинированных методов исследования хроматография в сочетании с перегонкой, спектроскопией и т. д. Хроматографическим путем в последнее время удалось установить состав низкомолекулярных кислот образующихся в начальный период окисления трансформаторных масел [3.13] (табл. 3.2). [c.68]

    Для изучения и идентификации продуктов разделения и термокаталитических превращений были применены методы га-зо-жидкостной хроматографии, спектроскопического aнaлiизa, тарм ической диффузии, структурно-группового исследования, а также некоторые методы химического анализа. [c.6]

    Фторирование этана [33] в тех же условиях дает СГ4, Са в, СРзСНГа, СНГаСНГа и СНГзСНаГ. По мере удлинения углеводородной цепи, снижается выход фторированных продуктов с тем же числом углеродных атомов в молекуле, как и у исходного углеводорода, и увеличивается количество продуктов, получающихся в результате крекинга углерод-углеродной цепи. Как правило, выходы сполна фторированных углеводородов удовлетворительны, например при фторировании гептана получено 62% С Е а [8]. С увеличением молекулярного веса исходного сырья возрастают трудности, связанные с разделением и идентификацией продуктов реакции, ввиду их сложности. Применимость этого метода к углеводородам с длинными цепями ограничена прежде всего вследствие трудности управления реакцией и низких выходов. [c.70]

    В зависимостп от метода разложения озонидов используют различные приемы разделения и идентификации продуктов разложения. [c.96]

    Полностью переработаны разделы по токсичности наиболее употребительных химических реактивов, а также разделы по газожидкостной и гопкослонной. хроматографии н ЯМР-спектроскопии. В некоторых. методиках имеются указания на применение современных методов прн разделении и идентификации продуктов реакций. Б расширенной но сравнению с предыдущими изданнямп аналитической части оговорены границы применимости реакций идентификации и имеются методики но определению грамм-эквивален-тов важнейших классов органических соединений.. Значительно расширен и переработан разд. В, где рассматриваются количественные данные о илняиии заместителей на скорость органических реакции. [c.9]

    Отличительной особенностью масс-спектрального анализа азотистых соединений по сравнению с другими нефтяными компонентами является образование молекулярных ионов (низковольтная масс-спектрометрпя) с нечетными массовыми числами, что облегчает идентификацию соединений этого типа. В работах последнего времени показана принципиальная возможность получения из масс-спектров низкого разрешения информации не только о структурно-групповом составе, но и о числе и длине заместителей в молекулах органических соединений сложных смесей [47—49, 52, 53]. Более глубокие сведения о структуре азотистых соединений основного и нейтрального характера сейчас получают на основе сочетания газовой хроматографии и масс-спектрометрического анализа продуктов разделения [54—59]. Этот метод признан наиболее эффективным, позволяющим идентифицировать азотсодержащие соединения вплоть до тетрацикли-ческих азааренов нри наличии эталонных соединений [57]. [c.133]

    Измерение фотолюминесценции — это чувствительный и гибкий метод химического анализа. Поэтому, выбирая метод анализа для измерения квантовых выходов или идентификации продуктов фотохимической реакции, следует обсудить и возможность применения фотолюминесценции. Часто при помощи прямых измерений флуоресценции удается следить за расходом исходного реагента или накоплением продукта (например, карба-зола из дифениламина [131]). В некоторых системах перед идентификацией необходимо провести разделение смеси продуктов, и если можно вызвать их флуоресценцию или фосфоресценцию, то фотолюминесценцию можно использовать для определения малых количеств веществ, которые могут быть разделены при помощи, например, тонкослойной или газовой хроматографии. Такие измерения представляют собой, по сути дела, аналитическое применение флуоресценции и фосфоресценции и рассматриваются в гл. V. В данном разделе мы обсудим некоторые специфические применения фотолюминесценции в фотохимических исследованиях. [c.367]

    В [12] осуществлена идентификация ди- и триметилбензо(/г)-хинолинов в образце сырой нефти. Исходный концентрат азотсодержащих соединений подвергался разделению методом микро-препаративной хроматографии высокого давления с использованием обращенной фазы с последующим разделением посредством капиллярной газовой хроматографии. По линейчатым спектрам флуоресценции и фосфоресценции в продуктах препаративного разделения в н-гексановых матрицах при Т = К идентифицированы 2,3- и 2,4-диметилбензо(/г)хинолины. Идентификация осуществлялась сравнением со спектрами искусственных смесей определяемых изомеров. [c.86]

    Одна и та же хроматографическая схема может быть успешно использована для решения различных аналитических задач методами аналитической реакционной газовой хроматографии. Однако для отдельных схем можно указать профилируюш ую область их применения. Так, например, схема 1 используется преимущественно в анализах полимеров по спектрам их продуктов пиролиза [2], схема 3 — в элементном анализе [10], схема 5 — для анализов с конверсией разделяемых соединений в продукты, наиболее удобные с аналитической точки зрения для детектирования [11] схема 7 — для проведения качественных реакций с целью идентификации хроматографически разделенных соединений [9] схема 6, а и б — для регистрации удаляемых в реакторе компонентов [7, 8] схема 8,6 — для регистрации результатов разделения химическим детектором (см., например, [16]). [c.50]

    Б. Смит и Р. Олсон [И] разработали метод идентификации ненасыщенных углеводородов, основанный на их гидрировании, после выделения в чистом виде в результате хроматографического разделения. Выделение чистых соединений (или отдельных фракций) проводилось в и-образной ловупгке (общая длина 15 см, диаметр 0,5 см), заполненной катализатором гидрирования Адамса (1% окиси платины, высота слоя 14 см), нри охлаждении в бане с сухим льдом. После улавливания хроматографической зоны ловушку удаляли иа охладительной бани и заполняли водородом до давления 3 атм в течение 1 мин. (один кран ловушки был при этой операции закрыт). Затем ловушку с закрытыми кранами помещали для проведения полного гидрирования выделенной фракции в баню с горячей водой (80—90° С) на 10 мин. После гидрирования ловушку подсоединяли к входу газового хроматографа и продукты потоком газа-носителя вносились в хроматографическую колонку для разделения. Метод был успешно применен к углеводородам с прямой углеродной цепью и к циклическим соединениям с двойными и тройными непредельными связями. Во всех случаях степень превращения близка к 100%. Ароматические углеводороды превращались в циклогексановые с выходом, превышающим 90%. Для проведения частичного гидрирования диенов продолжительность реакции уменьшалась до 5— 10 сек. В этой работе были предложены также методы частичного гидрирования алкинов. [c.58]

    А. Кейлеманс и С. Перри [1] показали большие возможности пиролитического метода для идентификации парафиновых углеводородов. Пиролиз проводили в пустой кварцевой трубке при 500° С. На примере анализа изомерных гексанов (2,2-диметилбутана и 2,3-диметилбутана) ими была установлена корреляция между наблюдаемыми продуктами и возможным разрывом молекулы по различным связям С—С. В дальнейшем А. Кейлеманс и К. Крамере [49] усовершенствовали пиролитический метод, использовав инертный золотой реактор (длина 1 м, диаметр 1 мм) и эффективные колонки для разделения продуктов пиролиза, цис- и транс- Изомеры дают близкие качественные картины продуктов пиролиза, но степень превра-ш ения различна. В некоторых случаях метод пиролиза, по сравнению с масс-спектрометрическим методом, дает более цепные результаты. Так, например, 2-метил-пентан-2 и 4-метил-г ис-пентен-2 дают подобные масс-спектры, но резко различные хроматографические спектры продуктов пиролиза. Метод пиролиза более прост, но позволяет получать приблизительно такую же аналитическую информацию, что и масс-спектрометрический метод. Воспроизводимость обоих методов практически одинакова. [c.72]

    Следует отметить, что ПГХ обычно достаточно чувствительна к структурным различиям в полимерах. В зависимости от близости химического строения, выбора условий пиролиза и хроматографического разделения хроматограммы продуктов пиролиза (пирограммы) анализируемых веществ могут иметь качественные, а иногда только количественные различия. Например, пирограммы фенолоформальдегидных смол, полученных на основе 3-метилфенола и 3,5-диметилфенола, резко различаются качественным составом продуктов пиролиза, а для полиэтиленов высокого (Мерлекс 6002) и низкого давления (Окитен С-03) удалось обнаружить только количественные различия в соотношениях отдельных продуктов. Благодаря очень высокой чувствительности метода к индивидуальным особенностям строения изучаемых веществ и даже к партиям полученных продуктов, пирограммы иногда образно называют отпечатками пальцев и широко используют для идентификации полимеров и других сложных объектов органической или биохимической природы. Поэтому исследования, в которых нет необходимости проводить идентификацию продуктов пиролиза (таких работ пока большинство), часто [c.73]

    В некоторых исследованиях используют одновременно два метода проведения эксперимента. В качестве примера можно привести работы Панкова с сотр. [И], посвященные идентификации высших пиридиновых оснований в продуктах промышленного синтеза ряда пи-ридинов. Гидрирование двойных связей в боковых углеводородных радикалах проводят в растворителе этаноле при комнатной температуре в атмосфере водорода на палладиевом (2%) катализаторе, осажденном на активном угле. О наличии и числе двойных связей судят на основании изменения времени удерживания компонентов после гидрирования. Для определения углеродного скелета анализируемые компоненты после разделения на хроматографической колонке и детектирования направляют в помещенный в печь при 250 °С реактор, заполненный катализатором (5% платины на пористом стекле). В реакторе происходит гидрирование пиридинового кольца и расщепление его до соответствующего углеводорода. Продукты гидрогенолиза собирают в ловушку с этанолом и анализируют на капиллярной колонке со скваланом. Наряду с основным продуктом при гидрогенолизе образуются также и побочные продукты, которые дают дополнительную информацию о структуре анализируемого вещества. Идентификацию продуктов гидрогенолиза проводят на основании опубликованных в литературе данных по удерживанию. Следует отметить, что в работах Панкова с сотр. наряду с реакционно-хроматографическим методом используют методы УФ-спектроскопии и ПМР. [c.122]

    Первым указанием на то, что фтиоцерол представляет собой смесь двух соединений, различающихся на группу С2Н4, явилась идентификация тетракозановой и докозановой кислот в качестве основных продуктов окисления вещества хромовой кислотой [52]. Образование этих кислот наряду с небольшими количествами С23- и С21-кислот было установлено, исходя из масс-спектров метиловых эфиров после их разделения методом газовой хроматографии. [c.337]

    В процессе разделения сахаров водонасыщенным раствором фенола из бумаги вымываются окрашенные в желтый цвет продукты, которые образуют затеки и могут помешать идентификации сахаров этим методом. Поэтому бумагу предварительно обрабатывают путем двух-трехкратного пропускания водонасыщенного раствора фенола через бумагу. После этого бумагу высушивают, и она пригодна к употребленшо. Для улучшения разделения сахаров применяют бумажные полосы специальной формы (рис. 19, стр. 114). [c.156]

    Когда углеводы облучают ионизируюш,им излучением в водном растворе, происходит значительное разрушение и образуются разнообразные продукты [1, 2]. Чтобы выяснить схему этих процессов, необходимо идентифицировать и точно оценить образуюш,иеся продукты. Обычные аналитические методы оказываются непригодными для этой цели из-за сложности реакционных смесей и малых количеств образуюш ихся индивидуальных комнонентов. В этой статье описывается применение сахаров, меченных С , в соединении со стандартными хроматографическими методами для разделения и идентификации продуктов реакции. Описаны методы изотопного разбавления для количественных определений. Методы иллюстрируются па примере облучения у-лучами Со" водных растворов -сорбита и -маннозы в присутствии кислорода. [c.201]

    Для разделения и идентификации продуктов гидразинолиза полиш1иффовых оснований, полученных поликоиденсацией дикетонов с п-фенилендиамином, может быть использована бумажная хроматография. Экспери.ментальные данные изучения продуктов гидразинолиза этим методом убедительно показывают, что одним из продуктов деструкции полишиффовых оснований является л-фе-нилендиамин. Вторым компонентом, выделенньим при разбавлении [c.196]

    Метод отпечатков пальцев обычно используют в тех случаях, когда отсутствует предварительная информация об исследуемом образце и состав продуктов пиролиза не изучен. В тех случаях, когда деструкция соединений протекает по закону случая и при этом не образуется заметного количества характеристических продуктов пиролиза, метод отпечатков пальцев является единственным методом идентификации, как, например, в случае полиэтилена. К условиям получения пирограмм, пригодных для идентификации методом отпечатков пальцев , предъявляются особые требования аппаратура, условия эксперимента и регистрации должны обеспечивать получение специфических пирограмм. В качестве иллюстрации к этому рассмотрим пирограммы полиэтилена (рис. 19), полученные при проведении пиролиза в пиролизере печного типа (А) и в пиролизере индукционного нагрева до точки Кюри (Б). Разделение продуктов пиролиза в обоих случаях проводили на колонке с реоплексом 400. Пирограмма, аналогичная приведенной на рис. 19,6, получена при использовании пиролизера филаментного типа. Если на пирограмме, изображенной на рис. 19, А, преобладает пик легких углеводородов, что является следствием глубокого распада и результатом протекающих в пиролизере печного типа вторичных реакций, то на пирограмме, приведенной на рис. 19, Б, отчетливо видны группы пиков (триплеты), состоящие из углеводородов парафинового, олефиново-го и диенового рядов с увеличивающимся числом углеродных атомов. Последняя пирограмма является специфической, характерной лишь для полиэтилена, что позволяет выделить его среди других типов полимеров и других органических соединений по общему рисунку пирограммы как отпечатку пальцев . [c.80]

    При изучении стрептотрицинов бумажную хроматографию использовали не только для анализа компонентного состава различных препаратов, но также для препаративного разделения [1643], контроля выделения и очистки [231, 240, 245], количественного анализа компонентов смесей стрептотрицинов [231, 369, 1662], при изучении биосинтеза [413] и влияния состава сред на образование стрептотрицинов [1665]. Также разработаны методы хроматографической идентификации продуктов гидролиза антибиотиков группы стрептотрицинов гулозамина, стрептоли-дина, р-лизина и др. [1663, 1664, 1666—1668]. [c.260]

    Бумажная хроматография неоценима при определении строения красителей. Ее главное назначение — идентификация продуктов деградации, например после восстановительного расщепления и гидролиза при помощи соляной кислоты. Кроме того, для определения строения красителя можно использовать результаты хроматографического анализа (аддитивные значения А- м). Идентифицированы при помощи БХ продукты расщепления красителей, извлеченных с текстильных волокон [120]. БХ применялась также для идентификации продуктов деградации красителей [14, 121]. Эти методы приспособлены для азокрасителей (комплексы с металлами, активные красители и азопигменты) [43, 5] метод идентификации продуктов деградации настолько усоверщенствован, что все реакции идентификации можно проводить после разделения продуктов деградации непосредственно на хроматограмме, т. е. устранен сложный процесс выделения продуктов, необходимый при анализе строения классическими методами. [c.97]

    Насбаумер [34, 35] разделил пенициллины после кислотного гидролиза. Анализируя продукт разложения пенициллина, он исследовал влияние 40 различных компонентов на идентификацию пенициллинов методом ТСХ. Этот же автор [36, 37] изучил возможность спектрофотометрического определения пенициллинов в различных фармацевтических препаратах. Прямому анализу этих антибиотиков мешают полиэтиленгликоли и стеараты натрия, однако предварительное разделение методом ТСХ позволяет отделить пенициллины от мешающих анализу соединений. Слои для хроматографического разделения приготавливают так смешивают 20 % рисового крахмала с силикагелем О в фосфатном буфере (pH 5,8). Элюирование проводят смесью бутилацетат—н-бутанол—уксусная кислота—фосфатный буфер (pH 5,8) — метанол (80 15 40 24 5). [c.537]

    Для идентификации продуктов, образующихся при старении, модификациях или загрязнении пластичных смазок, а также для слежения за реакциями, протекающими в процессе производства пластичных смазок требуется знание их химического состава. Обычно требуется идентификация лишь основных компонентов, например мыла или базового масла. В принципе пластичную смазку обрабатывают соляной кислотой или сульфатом калия и реакционной смесью, разделенной на фракцию, растворимую в гексана, и фракцию, нерастворимую в гексане. Затем классическими методами или хроматографическими либо спектроскопическими методами идентифицируют компоненты этих фракций. Чаще других применяют метод. ASTM D 128, газовую и тонкослойную хроматографию, атомно-абсорбционные, ИКС и рентгеноспектральный флуоресцентный анализ [12.74, 12.75]. [c.441]

    Нами проведены исследования по разработке количественного определения остатков цидиала в пищевых продуктах хроматополярографическим методом. В этом случае [7] хроматография используется для разделения и идентификации следов пестицидов, а полярография — для количественного определения их. [c.66]

    В. Идентификация продуктов хроматографического разделения нехроматографическими методами [c.127]


Смотреть страницы где упоминается термин Идентификация продуктов разделения метод: [c.100]    [c.95]    [c.96]    [c.126]    [c.129]   
Руководство по газовой хроматографии (1969) -- [ c.0 ]

Руководство по газовой хроматографии (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Идентификация методы

Методы продуктов

Методы разделения



© 2025 chem21.info Реклама на сайте