Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство серной кислоты в контактных системах

    На рис. III.1 представлены основные стадии технологической схемы производства серной кислоты контактным способом с использованием в качестве сырья колчедана, а на рис. III.2 — с использованием в качестве сырья природной серы, и указаны образующиеся в этих процессах отходы. Как видно из этих рисунков, основными отходами в производстве серной кислоты являются огарок и селеновый шлам (при работе системы на колчедане), отходящие газы, содержащие SO2 и туман H2SO4, а также кислые стоки. [c.58]


    При производстве серной кислоты контактным методом по схеме с двойным контактированием аппараты для сепарации брызг и туманов устанавливаются после сушильной башни, после первой стадии абсорбции и второй стадии абсорбции (на выходе газа в атмосферу). В системах с одинарным контактированием фильтры уста- [c.163]

    Химическая промышленность досрочно выполнила задания второго пятилетнего плана, увеличив выпуск продукции по сравнению с 1932 г. примерно в 3 раза. Повышение выработки химических продуктов и материалов сопровождалось коренными изменениями в технике и экономике производства. Сернокислотные заводы оснащались мощными башенными и контактными системами, расширялась их сырьевая база. Помимо природного колчедана, в производстве серной кислоты стали использовать отходящие газы цветной металлургии. Ввод в эксплуатацию комбината [c.18]

    В России производство серной кислоты по контактному методу впервые было осуществлено на Тентелевском ааво,це (ныне завод Красный. химик ) в Петербурге. Разработанная химиками этого завода тентелевская система была одной из самых совершенных систем своего времени и получила мировую известность. По этой системе были построены контактные установки в ряде стран, в том числе в Японии и США. [c.392]

    Перед войной Институт автоматики и телемеханики (ИАТ) АН СССР начал разработку системы автоматизации контактного отделения производства серной кислоты на Воскресенском химическом комбинате, аналогичная работа велась на Щелковском химическом заводе, где она была успешно завершена. [c.232]

    Каталитические процессы с большим выходом продукта за один цикл осуществляются, как правило, по прямоточным технологическим схемам — производство серной кислоты по контактному способу, производство разбавленной азотной кислоты и др. В таких системах для защиты атмосферы применяется санитарная очистка отходящих газов. Методы очистки газов отражены в некоторых примерах главы VII. [c.110]

    Принцип безотходности стремятся осуществить и в производствах, издавна работающих по прямоточной технологической схеме. Разработана и внедряется циклическая технологическая схема производства серной кислоты по контактному способу, благодаря которой в атмосферу не попадают выбросы, содержащие серу. Основной узел этой системы — каталитический реактор окисления 502 со взвешенными слоями катализатора. Элементы расчета этого реактора приведены в примере 17 данной главы. [c.110]


    Производство серной кислоты контактным методом по системе ДК состоит из стадий 1) подготовки сырья 2) получения диоксида серы 3) очистки газа 4) окисления сернистого ан- [c.15]

    Уменьшение количества стадий производства и переход к циклическим (замкнутым) системам можно считать двуединым направлением в развитии химических производств, приводящим к снижению затрат на капитальное строительство и уменьшению себестоимости продукции. Так, например, в настоящее время формальдегид производится окислением метанола, а метанол синтезируют из смеси СО и На, получаемой конверсией метана (природного газа) с водяным паром. Ведутся исследования по прямому окислению метана до формальдегида, т. е. по замене трехстадийного способа одностадийным. Соответственно снизятся капитальные затраты и повысится производительность труда обслуживающего персонала. Эффективность циклической системы можно рассмотреть на примере производства серной кислоты контактным способом (см. ч. 2, гл. IV). Ныне серная кислота производится по схеме с открытой цепью аппаратов, через которые последовательно проходит газовая смесь. Окисление диоксида серы происходит в пять стадий, абсорбция триоксида серы — в две стадии. Переход к циклической системе с применением кислорода и повышенного давления позволит снизить количество аппаратов в системе в 3 раза, в частности применять одностадийное окисление диоксида серы. При этом резко снизится количество диоксида серы в отходящих газах, т. е. одновременно решается экологическая проблема. Разумеется, далеко не все производства целесообразно переводить к одностадийным или к циклическим, но искать такие пути надо. [c.19]

    На рис. 1Х-4 показана схема производства серной кислоты контактным методом из сероводородного газа, получаемого при очистке нефтепродуктов. В этой системе по тем же причинам, что и в схеме СО, отсутствуют аппараты для специальной очистки газа. От схемы, изображенной на рис. 1Х-3, установки, работающие на сероводороде, отличаются тем, что подаваемый в печь воздух не подвергается осушке от влаги (поскольку большое количество паров воды образуется при горении сероводорода), а влажные газы из печи после котла-утилизатора поступают непосредственно в контактный аппарат, где окисление ЗОа происходит в присутствии водяных паров. [c.482]

    В производстве серной кислоты контактным способом применяют различные контактные сернокислотные системы в зависимости от того, какое сырье используют для получения серной кислоты (серный колчедан, газы металлургических печей, серу, сероводород и др.). Если, например, перерабатывают газы металлургических печей, то на сернокислотном заводе нет надобности в печном отделении для обжига или сжигания сырья если используют в качестве сырья серу, то упрощается отделение для очистки газа, а если применяют сероводород, дающий при сжигании сернистый газ с большим содержанием паров воды, контактное окисление ЗОг производят в присутствии влаги (мокрый катализ), т. е. отпадает необходимость в осушке газов. Контактные сернокислотные системы различаются также методами проведения отдельных стадий процесса переработки ЗОг в ЗОз и конструктивным оформлением отдельных аппаратов и частей установки. Но нес.мотря на многообразие этих систем в принципе они имеют много общего. [c.204]

    При производстве контактной серной кислоты по типовой схеме (см. рис. IV- ) можно достичь высокой степени очистки обжигового газа, поэтому система может работать длительное время без замены контактной массы. В абсорбционном отделении типовой схемы получают олеум или, в случае необходимости, кислоту повышенного качества. Однако аппаратурное оформление промывного и абсорбционного отделений типовой схемы связано с высокими капитальными затратами. Если потребитель не нуждается в олеуме и кислоте высокого качества (например, при производстве минеральных удобрений), эти затраты не оправдываются. В связи с ростом производства серной кислоты и производительности строящихся заводов при использовании типовой схемы увеличиваются капитальные вложения .  [c.99]

    Химико-технологические системы, применяемые в производстве серной кислоты, значительно различаются в зависимости от вида используемого сырья и, соответственно, концентрации диоксида серы, а также наличия контактных ядов в газе, поступаю- [c.132]

    Разработаны энерготехнологические циклические системы производства серной кислоты из серы и колчедана. Диоксид серы получают с применением технического кислорода. Высококонцентрированный газ не полностью (например, на 90%) окисляют в контактном аппарате с кипящим слоем катализатора. При абсорбции 50з получают высококонцентрированный олеум и моногидрат. Газ после абсорбции возвращают иа контактирование. В результате общая степень окисления составляет 99,995%. Для отвода накопляющегося азота часть газа после абсорбции пропускают через малогабаритную сернокислотную установку, из которой азот выбрасывается в атмосферу. Интенсивность работы циклической системы, работающей под давлением около 1 МПа [c.137]


    Катализатор можно использовать в контактно-башенных системах производства серной кислоты. Разработана технология производства его в виде зерен неправильной формы со следующими характеристиками [26, 159, 160]  [c.156]

    Для перемещения газа служат нагнетатели (газодувки), устанавливаемые в системе (см. рис. 7-9) после сушильного отделения (при работе на колчедане). Газ, поступающий в газодувку, охлажден и очищен от примесей, которые могли бы вызвать коррозию и нарушить работу нагнетателя. В производстве серной кислоты из колчедана все аппараты, расположенные до нагнетателя (в печном и очистном отделениях), работают при разрежении (в условиях вакуума) аппараты, расположенные в контактном и абсорбционном отделениях, т. е. после нагнетателя, — под некоторым избыточным давлением. Если в газопроводе или в каком-либо другом аппарате до нагнетателя имеются неплотности, то через них засасывается воздух и газ разбавляется особенно недопустим подсос воздуха на участке от сушильной башни до нагнетателя (включительно), так как при этом резко возрастает влажность газа. Например, при засасывании 1% воздуха концентрация газа снижается с 7,5 до 7,43%, а влажность повышается с 0,01 до 0,02%, т. е. в 2 раза. Неплотности в аппаратуре и газопроводах являются причиной утечки газа в помещение. [c.265]

    Для выделения тумана серной кислоты из отходящих газов в конце системы установлен электрофильтр. В отличие от контактного метода в производстве серной кислоты по нитрозному методу сернистый газ предварительно освобождается только от механических примесей (пыли). Очистки газа от мышьяка, селена и других примесей не требуется, так как они нб влияют на течение процесса. Очищенный от пыли сернистый газ (концентрация SO2 —9%) пост шает в башенную систему при 360—450 °С непосредственно из огарковых (сухих) электрофильтров и проходит через все башни сернокислотной системы. [c.132]

    Серная кислота производится двумя методами нитрозным и контактным. Производство серной кислоты по нитрозному методу (стр. 130 сл.) быстро развивалась с начала XIX в. в свя-с ростом производства соды. Первый завод для получения серной кислоты нитрозным методом с применением камерной системы был построен в России в 1805 г. Вначале серную кислоту получали в свинцовых камерах периодического действия, позднее перешли к непрерывному процессу. [c.63]

    Способность аппаратов с взвешенными слоями пропускать содержащуюся в газах пыль делает их особенно перспективными для применения в контактно-башенных системах и в коротких схемах производства серной кислоты, предусматривающих упрощенную очистку газов и допускающих повышенный процент содержания механических примесей в газе. [c.189]

    Подобное явление наблюдалось в начальный период эксплуатации колчеданных печей на одном из суперфосфатных заводов, где производство серной кислоты осуществляется по контактному способу с ванадиевым катализатором. В связи с тем, что на заводе растворы для очистки газов циркулируют по замкнутому циклу, происходило непрерывное движение фторидов в системе, вследствие чего небольшое количество 81 р4 попадало в контактный аппарат. Проходя через катализатор, газ разлагался с выделением кремнезема, блокировавшего активные центры катализатора. В результате этого производительность системы падала. При обследовании мокрых электрофильтров было обнаружено большее количество геля кремневой кислоты, что являлось следствием выделения из бетона. [c.142]

    Коренные усовершенствования внесены в производство контактной серной кислоты. В настоящее время строятся мощные сернокислотные заводы производительностью для одной системы более 1000 т серной кислоты в сутки, оснащенные совершенной аппаратурой и оборудованные приборами автоматического контроля и регулирования технологического процесса. В качестве катализаторов применяется термически стойкая ванадиевая контактная масса (в виде гранул и колец), характеризующаяся пониженной температурой зажигания. Освоены новые более простые способы очистки обжигового газа и абсорбции серного ангидрида. Разработаны и освоены новые схемы производства серной кислоты из серы, сероводорода, из отработанных кислот различных производств внедряются способы использования серы топочных и других газов и т. д. [c.14]

    В производстве серной кислоты возможны пять вариантов применения кислорода (рис. 9-14) с частичной или полной заменой им воздуха и с вводом О2 в различные участки системы (в печное и контактное отделения). [c.299]

    В табл. 74 приведены элементы цеховой себестоимости 1 т серной кислоты (в пересчете на 100%-ную), получаемой контактным и башенным методами на одном из заводов. Из таблицы видно, что в производстве серной кислоты расходуется сырье (колчедан), вспомогательные вещества (катализатор, азотная кислота в башенных системах), электроэнергия (на питание электродвигателей, насосов, вентиляторов, компрессоров и на освещение), вода (для охлаждения кислоты), топливо, пар и т. д. [c.427]

    При производстве серной кислоты из колчедана и газовой серы газодувка находится перед контактным аппаратом. Поэтому, печное, промывное и сушильное отделения находятся под разрежением, а контактное и абсорбционное —под давлением. В производстве серной кислоты из сероводорода методом мокрого катализа система находится полностью лод давлением. [c.51]

    В-третьих, однопол очные аппараты ввиду простоты их конструкции заманчиво применять для короткой схемы сухой очистки [1, 26] производства серной кислоты контактным способом на газе от обжига серного колчедана. В этом случае газ, содержащий 8—10% ЗОз, после неполной сухой очистки поступает в контактный аппарат. Минимальная степень превращения для короткой схемы составляет около 80%, поэтому необходим высокий слой катализатора — 350— 450 мм. Оптимальная температура составляет 520—500° С, тогда как при адиабатическом режиме [уравнение (111.12)] она была бы 700° С. Поэтому необходимо отводить из слоя большое количество тепла и целесообразно устанавливать трубы парового котла непосредственно в кипящем слое катализатора, используя хорошую теплоотдачу. Газ после контактного аппарата охлаждается в теплообменниках, затем серный ангидрид абсорбируется с образованием загрязненного олеума и моногидрата, а оставшийся чистый газ поступает во вторую стадию окисления в аппарат с фильтрующими слоями катализатора и затем на повторную абсорбцию. Достигается весьма высокая степень окисления 30а х = 0,995), а также более полная абсорбция серного ангидрида. Загрязнение атмосферы уменьшается в несколько раз по сравнению с обычными системами. Себестоимость кислоты по сравнению с обычными установками снижается вследствие отсутствия громоздких и дорогих в эксплуатации мокрых электрофильтров и промывных башен, а также благодаря использованию тепла реакций для получения пара. [c.151]

    Так, при изучении производства серной кислоты контактным способом учащиеся в первую очередь должны понять химизм и механизм каталитического окисления оксида серы (IV) в оксид серы (VI), процесс улавливания его концентированной серной кислотой с образованием олеума и разбавления последнего до стандартных концентраций. Очевидно, вначале нужно показать фрагменты фильма, раскрывающие эти процессы и применяемые для их осуществления аппараты. Затем рассматривают условия, необходимые для осуществлен( я данных процессов в технике. На экране показывают печь для обжига колчедана (или сжигания серы), установки для очистки и осушки оксида серы (IV), системы теплообменников. И, наконец, данный фрагмент фильма показывают полностью. [c.144]

    До настоящего времени усовершенствование производства серной кислоты контактным методом было направлено по пути улучшения конструкции отдельных аппаратов, более рационального оформления технологических узлов и процесса в целом, внедрения высокоактивных дешевых катализаторов, применения более простых и надежных методов контроля и т. д. Производительность контактных систем непрерывно возрастала с 10—12 ткутки в 1913 г., 24 т сутки в 1930 г., до 120 ткутки в 1950 г. (на одну нитку). В настоящее время на отечественных заводах работают контактные системы производительностью 360 и 540 т кислоты в сутки и проектируются системы на 1000 ткутки. [c.291]

    Г1ри производстве серной кислоты контактным способом концентрация выпускаемой кислоты различна. Эта кислота содержит мсш.ше окислов азота и в пей меп1>ше твердо1 () остатка, чем в кислоте, полученной башенным способом, так как газ в контактной системе подвергается более тщательной очистке. Но эта кислота также содержит продукты коррозии материалов, из которых выполнена аппаратура. [c.25]

Рис. 9-12. Схема производства серной кислоты по системе СО-2 /-сухой электрофильтр 2 —первый контактный аппарат 5 - теплообменники 4 —конденсатор 5—стеклосетчатые фильтры 5—мокрый электрофильтр 7 — нагнетатель 8 — второй контактный аппарат Р — пароперегреватель — абсорбер. Рис. 9-12. <a href="/info/682102">Схема производства серной кислоты</a> по системе СО-2 /-<a href="/info/535882">сухой электрофильтр</a> 2 —<a href="/info/1772867">первый контактный</a> аппарат 5 - теплообменники 4 —конденсатор 5—стеклосетчатые фильтры 5—<a href="/info/95143">мокрый электрофильтр</a> 7 — нагнетатель 8 — <a href="/info/1772868">второй контактный</a> аппарат Р — пароперегреватель — абсорбер.
    Несмотря на то, что контактный способ получения серной кислоты сравнительно новый, он за последние годы значительно усовершенствован. Одна из причин этого — неуклонное повышение спроса на крепкую и чистую кислоту. Около 70% получаемой во всем мире серной кислоты производят в настоящее время этим способом. В нашей стране строят контактные сернокислотные заводы большой мощности с применением приборов автоматического контроля и регулирования технологического процесса. Стоит вопрос о создании для производства серной кислоты контактным способом заводов-автоматов. Мощность отдельных аппаратов также сильно увеличена. Если, например, в 30-х годах применяли контактные аппараты производительностью 25—30 г серной кислоты в сутки (система Герресгофф — Байера), то сейчас уже проектируют контактные аппараты производительностью 1000 т в сутки и больше. [c.11]

    В производстве серной. кислоты контактным способом полу -чили применение контактные сернокирлотные системы, различающиеся в основном методами проведения отдельных стадий про-lie a переработки SOa SOg и конструктивным оформлением от- дельных аппаратов и частей установки. Но, несмотря на многое обраэие этих систем, в принципе они имеют много общего. [c.143]

    При том же, что и в предыдущем случае, качественном составе параметров была сформулирована задача оптимизации работы полученного агрегата с учетом факторов неопределенности информации. Всего было выделено 11 точечных и 19 неопределенных параметров. Под точечными понимаются такие параметры, которые полностью соответствуют детерминированным оптимизирующим переменным традиционной оптимизации. В качестве примера таких параметров можно привестп объемы загрузок контактной массы, площади поверхности теплообменной аппаратуры и др. В результате решения поставленной задачи для четырехслойной системы производства серной кислоты из серы под давлением были получены оптимальные значения параметров технологических потоков ХТС (расходы, температуры, давления, [c.277]

    Износоустойчивый окисножелезный катализатор [13, 27, 28, 38] может применяться в комбинированном контактно-башенном способе производства серной кислоты, для которого достаточно окислить около 30 объемн. % ЗОз перед поступлением газа в нитрозную башенную систему с целью получения купоросного масла и разгрузки питрозной системы. При переработке газов от сжигания колчедана ванадиевый катализатор отравляется мышьяком, в результате чего его активность снижается примерно в 2 раза. Железный катализатор мышьяком не отравляется, однако он все же менее активен, чем отравленный ванадиевый катализатор. Окись железа в виде крупных кусков огарка, получаемого при обжиге колчедана, применялась ранее в промышленных аппаратах для окисления сернистого газа. Активность ее достаточно исследована [2, 39—41]. Во взвешенном слое огарок в качестве катализатора не пригоден, так как его истираемость составляет 95% в месяц. Исследованиями [28, 38] было установлено, что можно резко повысить механическую прочность колчеданного огарка за счет введения цементирующих добавок (жидкое натриевое стекло или фосфорная кислота). При этом каталитическая активность огарка практически не снижается. Истираемость такого катализатора составляет 2—3% в месяц. В качестве порообразующего компонента в смесь вводится технический глицерин или другая органическая примесь, выгорающая при прокаливании катализатора. [c.148]

    Р1так, важнейшими тенденциями развития производства серной кислоты являются повышение концентрации диоксида и триоксида серы в технологических газах и уменьшение их содержания в отходящих газах применение давления циклическая система производства с использованием контактных аппаратов с кипящими слоями прочного термостойкого катализатора разработка и применение более активных катализаторов, имеющих пониженную температуру зажигания максимальное использование теплоты реакций на всех стадиях производства для выработки товарного водяного пара. [c.138]

    Одним из наиболее перспективных направлений развития контактного сернокислотного производства является получение серной кислоты в системах с замкнутым газооборотом. В таких системах за счет рециркуляции отработанных газов обратно на переработку обеспечивается полная экологическая безопасность и, в то же время, появляется возможность значительно интенсифицировать процессы сернокислотного производства и уменьшить размеры технологического оборудования путем использования в качестве окислителя чистого кислорода или воздуха, обогащенного кислородом. [c.3]

    Все эти данные позволяют рекомендовать резины на основе фторкаудука (с соответствующим наполнителем) для изготовления прокладок к пластинчатым теплообменникам, предназначенным для охлаждения кислот на контактных системах производства серной кислоты (табл. 6.18). Была установлена также возможность применения фтористой резины марки ИРП-1225 в качестве прокладочного материала в пластинчатых теплообменниках для охлаждения нитрозной и безнитрозной серной кислоты. При испытании этой резины в нитрозной 76%-ной Н2504 при 90° С в течение 200 ч обнаружено, что в условиях испытания набухание ее не более 5%, резина сохраняет достаточную прочность и эластичность. Еще меньше изменений претерпевает резина в серной [c.199]

    Важно, кроме того, отметить, что для производства синтетических красителей требуются и другие химические продукты, прежде всего сода и серная кислота (концентрированная и дымящая). Между тем в Японии того времени современная неорганическая химия еще не располагала прочной базой. Так, например, в 1905 г. на военном заводе морского флота в Хирацука была введена Тентелевская система получения серной кислоты, а в 1910 г. на ар-ме]кком военном заводе в Одзи серную кислоту начали получать контактным способом (Шредера — Ноймана) однако на частных предприятиях выпуск серной кислоты контактным способом для нужд нефтепереработки и промышленности синтетических красителей еще не был освоен. Соду также получали по устаревшему методу Леблана, такие новые, современные способы ее производства, как аммиачный и электролизный, еще пе применялись. [c.225]

    Рациональный выбор материалов для изготовления аппаратуры имеет большое практическое значение и в значительной степени определяет экономические показатели химического производства. В производстве серной кислоты и при ее концентрировании концентрация кислот на различных стадиях технологического процесса изменяется в широких пределах от 0—10% Н2804 в увлажнительной башне контактной системы до 104,5% Н2504 или 20% 50з (своб.) в абсорбционном отделении. Коррозионное действие серной кислоты существенно зависит от ее концентрации, поэтому в соответствии с конкретными условиями производствен- [c.35]

    Производство серной кислоты из концентрированных сернистого ангидрида и кислорода по циклической схеме освоено в промышленных условиях в Канаде. Производительность установки (рис. 9-15), состоящей из двух контактных систем, достигает 200 mi ymxu серной кислоты, объем газовой смеси, циркулирующей в системе, 10 ООО ж /ч. Она содержит 25% SOj и около 30% О. и циркулирует в системе при помощи вентилятора 1. Из теплообменника 2 газ поступает в контактный трехслойный аппарат 3 диаметром 2,75 м и высотой 4,5 м. Температура газа на входе в первый слой контактной массы 400 °С, на выходе 680 °С на входе во второй слой 585 °С, на выходе 640 °С на входе в третий слой 560 °С, на выходе 640 °С. Под каждым слоем контактной массы имеются трубки, в которых циркулирует охлаждающий воздух. [c.301]

    В настоящем учебнике, посвященном технологии одного из важнейших продуктов химической промышленности—серной кислоте, главное внимание уделено наиболее совершенным процессам и аппаратам сернокислотного производства, разработанным в последние годы. Ус1аревшие производственные схемы не рассматриваются лишь кратко описано оборудование, еще сохранившееся на наших заводах, но подлежащее замене или реконструкции. В книге описаны новые схемы контактного процесса при переработке колчедана, сероводорода и концентрированного сернистого ангидрида, многослойные контактные аппараты, процесс приготовления катализатора. Подробно рассмотрена пятибашенная система для производства серной кислоты нитрозным методом, одобренная отраслевым совещанием работников сернокислотной промышленности в 1954 г. Приведено описание недавно освоенного устройства для выделения окислов азота и тумана из отходящих газов башенных систем. [c.7]

    В России производство серной кислоты впервые было организовано в 1805 г. под Москвой в Звенигородском уезде. В 1903 г. в Петербурге была пущена оригинальная контактная система. Однако по количеству производимой кислоты Россия в то время очень отставала от других стран, в 1913 г. она занимала лищь 13 место в мире. [c.41]


Смотреть страницы где упоминается термин Производство серной кислоты в контактных системах: [c.86]    [c.179]    [c.262]    [c.251]   
Смотреть главы в:

Технология серной кислоты -> Производство серной кислоты в контактных системах




ПОИСК





Смотрите так же термины и статьи:

Кислота контактная

Кислоты системы

Контактная серная кислота, производство

Производство контактной кислоты

Производство контактной кислоты производства

Серная кислота производство



© 2025 chem21.info Реклама на сайте