Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газа от сероводорода и осушка

    В состав установки концентрирования входят блоки предварительного охлаждения, очистки от сероводорода, осушки газа на цеолитах, аммиачного охлаждения, низкотемпературного раз-деления. Как показали расчеты, применительно к установке мощностью 5 тыс. т/год себестоимость производства водорода низкотемпературным концентрированием в Ц8 раза.ниже, чем конверсией. [c.273]


    Последовательность улавливания химиче ских продуктов и очистки газа под давле нием на этой установке компрессоры — хо лодильники — бензольный абсорбер — сероочистной абсорбер (раствор поташа) — сухая очистка от сероводорода — осушка (раствор хлористого кальция) — очистка от нафталина. [c.163]

    До фракционирования углеводородные газы направляются вначале в блоки очистки от сероводорода и осушки. [c.203]

    Парожидкостная смесь после реактора П ступени 3 охлаждается в теплообменнике 6 и конденсаторе-холодильнике 7 и подается в сепаратор высокого давления 8. Отделившийся от жидкой фазы водородсодержащий газ проходит очистку от сероводорода в абсорбере 11, осушку и смешивается с сырьем. Для восполнения водорода, израсходованного на реакции гидрирования, в систему постоянно вводится свежий водород содержащий газ. [c.49]

    Газы пиролиза перед выделением из них этилена должны подвергаться очистке от сероводорода, окиси и двуокиси углерода и ацетилена. Кроме того, они должны быть осушены. Напболее часто для осушки применяются твердые адсорбенты — активированная окись алюминия, боксит или силикагель. На многих установках с целью уменьшения нагрузки на твердые осушители газы пиролиза предварительно вымораживают. [c.55]

    Для улучшения качества продуктов и условий эксплуатации оборудования газоперерабатывающих заводов углеводородные газы предварительно подвергают очистке от механических примесей, (взвешенных частиц пыли, песка, продуктов коррозии газопроводов и т. д.), осушке и, наконец, очистке от сероводорода и двуокиси углерода. [c.153]

    Принципиальная схема подобной установки показана на рис. 25. Остаточное сырье смешивается с циркулирующим и свежим водородсодержащим газом и, пройдя систему теплообменников 3 и нагревательную печь 2, поступает под распределительную решетку реактора 1. В псевдоожиженном слое катализатора (типа АКМ), создаваемом парожидкостным потоком, осуществляется процесс гидрокрекинга. Продукты реакции, выходя сверху, отдают свое тепло в теплообменниках 3 и холодильниках 4 и поступают в сепаратор высокого давления 5, где от жидкой фазы отделяется водородсодержащий газ. После очистки от сероводорода и осушки водородсодержащий газ с помощью компрессора 7 передается на смешение с сырьем. [c.67]

    На схеме 2 рис. 16 показано, что в качестве основного агрегата газификации может быть принята установка типа ГРГ. В этом случае гидрокрекинг сырой нефти должен предшествовать стадии разгонки по фракциям, а очистка газов, покидающих реактор ГРГ, от жидких погонов и сероводорода должна осуществляться перед операциями метанизации, осушки и выдачи конечного продукта. Остаток после фракционной разгонки необходимо, как и в предыдущем случае, подвергать конверсии по методу частичного окисления с целью получения водорода, необходимого для осуществления процесса в реакторе ГРГ. [c.143]


    Преимуществами адсорбционных методов очистки перед абсорбционными являются высокая поглотительная способность адсорбентов даже при низких. парциальных давлениях извлекаемых компонентов и возможность сочетать тонкую очистку газа от сероводорода, диоксида углерода и сераорганических соединений с глубокой осушкой газа (например, до точки росы газа по влаге минус 70 °С при очистке и осушке газа на цеолитах). [c.15]

    Адсорбционную очистку газа от сероводорода и сераорганических соединений применяют обычно при небольших концентрациях извлекаемых компонентов в газе, когда необходима тонкая очистка газов от примесей, либо сочетают процессы тонкой очистки газа от меркаптанов и осушки перед подачей газа на низкотемпературную переработку. [c.61]

    Осушка и очистка сложных газовых смесей, в которых определяются один или несколько компонентов, требует избирательных сорбентов. Так, для очистки от сероводорода газовой смеси, содержащей даже небольшие примеси двуокиси углерода или других кислых газов, не могут быть применены щелочные сорбенты (аскарит, ХПИ, щелочи). Фосфорный ангидрид неприменим для осушки галогеноводородов, с которыми в присутствии влаги взаимодействует [c.590]

    На ГПЗ попутные газы с нефтяных промыслов подвергаются переработке, включающей следующие стадии 1) осушка и очистка от сероводорода 2) извлечение лз газов так называемого нестабильного бензина — углеводородов и выше (отбензинивание газа) 3) сжатие отбензиненного газа до давления, необходимого для перекачки его потребителям. [c.49]

    В нефтяной и газовой промышленности процесс абсорбции применяется для разделения, осушки и очистки углеводородных газов. Из природных и попутных нефтяных газов путем абсорбции извлекают этан, пропан, бутан и компоненты бензина абсорбцию применяют для очистки природных газов от кислых компонентов — сероводорода, используемого для производства серы, диоксида углерода, серооксида углерода, сероуглерода, тиолов (меркаптанов) и т.п. с помощью абсорбции также разделяют газы пиролиза и каталитического крекинга и осуществляют санитарную очистку газов от вредных примесей. [c.192]

    На начальной станции каждого магистрального газопровода производится отбензинивание газа, его очистка и осушка. Бензин является ценным продуктом, и его нецелесообразно сжигать. Очистка от сероводорода и осушка производятся путем промывки газа в колонне диэтиленгликолем и моноэтаноламином. Производится также очистка газа от пыли. [c.204]

    Углеводородный природный газ, добы- ф ОчиСТКа и ОСушка ваемый из газовых месторождений, со- природного газа стоит главным образом из метана с не-большой примесью более тяжелых углеводородов. Кроме того, в нем присутствуют азот, углекислый газ, сероводород, гелий и аргон. Любой природный газ содержит также пары воды. Газовая залежь в толще горных пород окружена водой и находится в контакте с влажными глинами, песками и другими минералами. Поэтому газ в залежи насыщен водяными парами. [c.287]

    В качестве жидкого поглотителя для осушки газа чаще всего применяют этиленгликоль. Эта жидкость хорошо поглощает воду, а также сероводород. Осушку газа и его очистку от сероводорода в ряде случаев совмещают, применяя поглотитель, представляющий собой смесь из диэтиленгликоля, моноэтаноламина и некоторого количества воды. Подобную осушку и очистку газа производят на установках, аналогичных описанной выше для удаления сероводорода. [c.290]

    Молекулярные сита используются для осушки и очистки непредельных углеводородов — этилена и пропилена — от углекислого газа, сероводорода и некоторых других веществ. [c.313]

    Молекулярные сита могут быть также использованы для очистки газов и жидкостей от сернистых соединений. При этой очистке одновременно происходит осушка газа, а также удаление СО2- По данным фирмы Линде, на одной установке с молекулярными ситами очищается в сутки 140 тыс. природного газа, в котором содержание сероводорода составляет 2,2 г/м . В газе, выходящем из установки, содержание сероводорода не превышает 2-10 г[м . [c.315]

    Производство современных стереорегулярных каучуков растворной полимеризацией потребовало углеводородного сырья высокой степени чистоты. Для промышленного синтеза бутадиена, изопрена и изобутилена каталитическим дегидрированием требуются соответственно бутановая, изопентановая и изобутановая фракции с содержанием основного продукта не менее 98 % (масс.). Для улучшения качества продуктов и условий эксплуатации оборудования углеводороды предварительно подвергают специальной подготовке, состояш,ей в очистке газа от механических примесей, осушке от влаги, удалении сероводорода и двуокиси углерода. [c.29]


    Совместное отделение Сз и более легких газов от широкого по фракционному составу сырья, очистка от сероводорода и осушка этой легкой части достигаются при помощи раздельного депропанизатора, лютерная и концентрационная части которого монтируются в виде двух отдельных колонн (см. рис. IV. 10). Выходящие из первой по ходу лютерной колонны легкие газы, пары и сероводород проходят очистку от Н13 и осушку, после чего [c.161]

    В 1940—1950 гг. широкое распространение в США и частично в СССР получили установки по одновременной очистке и осушке газа комбинированным раствором, состоящим примерно из 80—85% диэтиленгликоля, 10—15% моноэтаноламина и 5% воды. Технологическая схема и аппаратура таких установок аналогичны описанным выше для установок по очистке газа от сероводорода. [c.118]

    Интенсивная коррозия латунных трубок за счет контакта технологического продукта с наружной поверхностью этих трубок наблюдается обычно в тех случаях, когда углеводородные газы термических и каталитических крекингов, перерабатывающих сернистые нефти, не подвергаются осушке и очистке от сероводорода и других примесей. В этом случае, в особенно тяжелых уело- [c.154]

    Принципиальная схема подобной установки выглядит следующим образом (рис. 97). Остаточное сырье смешивают с циркулирующим и свежим водородсодержащим газом и через систему теплообменников Т-1 и печь П-1 подают под распределительную решетку реактора Р-1 с псевдоожиженным слоем сероустойчивогО катализатора (типа алюмо-кобальт-молибденового). В этом слое, создаваемом газо-жидкостным потоком, осуществляется гидрокрекинг. Продукты реакции, выходя с верха реактора, отдают тепло-в теплообменниках Т-1 м холодильниках Т-2 и поступают в сепаратор Е-1 высокого давления, где от жидкой фазы отделяется циркулирующий водородсодержащий газ. После очистки от сероводорода и осушки этот газ возвращают компрессором Н-2 на смешение с сырьем. Насыщенный легкими углеводородами катализат с низа сепаратора Е-1 после сброса давления перетекает в сепаратор Е-2, где отделяются газообразные углеводороды и (частич- [c.261]

    Осушка и очистка газа от сероводорода осуществляются обычно совместно в одной комбинированной установке. Схема такой установки представлена па рис. И1-6. Неочищенный газ поступает в нижнюю часть колонны абсорбера 1, где вступает в контакт [c.68]

    Высокая избирательность цеолитов позволила создать процесс одновременного удаления из газовых смесей влаги, сероводорода, диоксида углерода и меркаптанов. Эффективными адсорбентами для глубокой осушки и очистки газов являются цеолиты НаХ и СаЛ. [c.9]

    Эта реакция обратима. При 40—80°С она протекает слева направо. В этих условиях происходит очистка газа от сероводорода. При 110—140°С реакция направлена обратно. Это используют для регенерации отработанного раствора. Газ в абсорбере очищают орошением его раствором аминов. Очищенный газ уходит из абсорбера сверху. Отработанный раствор аминов прокачивают насосом через теплообменник, где его температура повышается до 90—100°С, и поступает в регене-ратор-десорбер, в нижней части которого находится кипятильник для нагрева раствора до 130—140°С и отгонки кислых газов. Регенироваиный раствор подают насосом через теплообменник и холодильник на очистку газа. Сероводород охлаждают, отделяют от водного конденсата и направляют для дальнейшей переработки в серу или серную кислоту. Принципиальная технологическая схема и аппаратурное оформление при осушке газа аналогичны описанным. [c.172]

    С экономической точки зрения рассматриваемый процесс перспективен для обработки сероводородсодержащих газов высокого давления, предназначенных для транспортировки по магистральным газопроводам. Три процесса (очистка от сероводорода, осушка, получение элементной серы) совмещен в один. На процесс не оказывает влияния содержание в газе диоксида углерода и тяжелых углеводородов. Эффективность превращения сероводорода в серу выше, чем в процессе Клауса. Потребность в энергии меньше, чем для осуществления трех отдельных процессов. Общий расход энергии приблизительно такой, как для существующего процесса этаноламиновой очистки газа от сероводорода. [c.82]

    Для большинства технологическич процессов переработки газа (очистка от сероводорода, осушка, стабилизация конденсата, получение широкой фракции легких углеводо родов) необходима оптимизация режимов, позволяющая сократить расходы химических реагентов и энергоресурсов (в основном, пара). Для установок получения серы оптимизация увеличивает выход целевого продукта. [c.8]

    Наряду с тонкой очисткой газа от сероводорода и других сернистых соединений на цеолитах происходит также глубокая осушка газа. Цеолиты обладают высокой адсорбционной емкостью и селективностью по отношению к сероводороду. Для очистки больших количеств газа (до 200 000 м /ч) с низким содержанием сероводорода в качестве адсорбентов используют также активные угли. При этом степень извлечения сероводорода может достигать 99,5%. Сорбционные свойства углей могут быть повышены введением в их состав оксидов некоторых металлов млди, железа, никеля, марганца, кобальта. [c.52]

    В секции изомеризации принята двухреакторная схема со ступенчатым снижением температуры от первого реактора ко второму. Повышенная температура в первом по ходу сырья реакторе 2 обеспечивает более полное разложение чегы-реххлористого углерода и протекание изомеризации с образованием изопентана и монозамещенных гексанов, во втором реакторе 3 происходит изомеризация до вы-сокоразветвленных гексанов, обладающих высокими октановыми характеристиками. Принятый способ низкотемпературной изомеризации определяет включение в схему установки системы глубокой осушки и очистки от сероводорода водородсодержащего газа, поступающего в систему изомеризации, а также узлов хлорирования катализатора и улавливания продуктов хлорирования. [c.143]

    В отличие от хемосорбциопных способов методом физической абсорбции можно наряду с сероводородом и диоксидом углерода извлекать серооксид углерода, сероуглерод, меркаптаны, а иногда и сочетать процесс очистки с осушкой газа. Поэтому в некоторых случаях (особенно при высоких парциальных давлениях кислых компонентов и когда не требуется тонкая очистка газа) экономичнее использовать физические абсорбенты, которые по сравнению с химическими отличаются существенно более низкими затратами на регенерацию. Ограниченное применение этих абсорбентов обусловлено повышенной растворимостью углеводородов в них, что снижает качество получаемого кислого газа, направляемого обычно на установки получения серы. [c.14]

    Горячее осушенное масло, откачиваемое насосом 14 снизу колонны 15 вакуу м ой осушки, работающей под остаточным давлением около 13,3 кПа, охлаждается в теплообменнике 2 и холодильнике 16 и через фильтр 17 и концевой холодильник 18 направляется в резервуар гидродоочищенного базового масла. Фильтр 17 служит для улавливания катализаторной пыли и продуктов коррозии. Конденсат, собирающийся в сепараторе 10, проходит через дроссельный клапан в сепаратор 13. Циркулирующий газ высокого давления, уходящий из низкотемпературного сепаратора, очищается от сероводорода регенерируемым поглотителем в секции очистки газа. Часть очищенного газа (отдув) отводится в топливную сеть основная же его масса по выходе из- сепаратора 19 сжимается компрессором 5 и, пройдя сборник 20 и т плообменник 4, присоединяется к потоку сырья. [c.276]

    На газоперерабатывающих заводах имеются также установки по осушке и очистке газа от сероводорода. На нефтяных промыслах сооружаются как стационарные, так и передвижные газопере- [c.108]

    В осушаемых газах, кроме воды, содержатся тяжелые углеводороды, диоксид углерода, сероводород и другие соединения серы. Установки адсорбционной очистки газа проектир)ост при подборе адсорбентов с учетом влияния этих компонентов и примесей на процессы адсорбции и десорбции воды. Адсорбционную осушку газа часто комбинируют с адсорбционной очисткой газа от нежелательных примесей. При этом влагоемкость адсорбентов при наличии тяжелых углеводородов в газе значительно ниже. [c.87]

    Очистка газов растворами гликольамина. На отечественных ГПЗ для очистки газов от сероводорода и диоксида углерода применяют в основном хемосорбционные процессы, где в качестве поглотителя используют водные растворы моно- и диэтаг ноламинов. На таких установках газ после очистки содержит влаги больше, чем до очистки. Это объясняется повышением температуры в абсорбере за счет тепла, выделяемого при взаимодействии НгЗ и СОг с аминами. Дополнительное увлажнение газа ухудшает технИко-экономические показатели установки осушки. [c.101]

    Так, например, на Астраханском ГПЗ в составе установки осушки и отбензинивания обессеренного газа на протяжении ряда лет успешно эксплуатируются два турбодетандерных агрегата типа 40R фирмы ROTOFLOW [27]. На турбины афегатов газ поступает после очистки от сероводорода и газожидкостной сепарации, имея следующий состав, % мольные С] - 91,95 С2 - 5,61 Сз -1,12 1С4 - 0,124 11 4 - 0,186 1С5 - 0,030 n s - 0,020 N2 - 0,96. В табл. 2 приведены данные результатов обследования работы тур- [c.13]

    Абсорберы (англ. absorbers) — аппараты для разделения газовых смесей путем избирательного поглощения их компонентов жидкими поглотителями (абсорбентами). Абсорберы используются в нефтяной, газовой, нефтегазоперерабатывающей отраслях промышленности для разделения, осушки и очистки углеводородных газов. Из природных, попутных газов и газов нефтепереработки в абсорберах извлекают этан, пропан, бутан, легкие бензиновые фракции. При санитарной очистке газов в абсорберах улавливают сероводород, оксид серы, фтор и его соединения, хлор и хлориды, аммиак и другие вредные примеси. [c.7]

    Абсорбция (англ. absorbtion) — процесс избирательного поглощения компонентов газовой смеси жидким поглотителем (абсорбентом). Применяют в нефтяной, газовой, нефтегазоперерабатывающей промышленности для разделения, осушки и очистки углеводородных газов. Из природных и попутных нефтяных газов путем абсорбции извлекают этан, пропан, бутан и компоненты бензина абсорбцию применяют для очистки природных газов от кислых компонентов — сероводорода, используемого для производства серы, диоксида углерода, серооксида углерода, сероуглерода, тиолов (меркаптанов) и т.п. С помощью абсорбции также разделяют газы пиролиза и каталитического крекинга и осуществляют санитарную очистку газов от вредных примесей. [c.12]

    I - абсор р очистки от сероводорода 2 - абсорбер осушки 3 - колонна отдувки 4 -дегазаторы 5 - блок регенерации ДЭГ 6 - теплообменник /, П и /// - исходный, отдувочный и очищенный от сероводорода газы IV - осушенный газ ( -газ дегазации V - жидкие углеводороды УИ - раствор ДЭГ, насыщенный сероводородом и воаой VIII - регенерированный раствор ДЭГ , [c.299]


Смотреть страницы где упоминается термин Очистка газа от сероводорода и осушка: [c.172]    [c.34]    [c.172]    [c.180]    [c.282]    [c.302]    [c.172]    [c.180]    [c.382]   
Смотреть главы в:

Химия и технология нефти и газа -> Очистка газа от сероводорода и осушка




ПОИСК





Смотрите так же термины и статьи:

Осушка

Осушка газов

Осушка и очистка

Очистка газов Очистка газа от сероводорода

Очистка газов от сероводорода

Сероводород в газах



© 2025 chem21.info Реклама на сайте