Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка непредельных соединений Гидроочистка

    На многих предприятиях в качестве топлива используют заводские газы — побочные продукты технологических установок. Ресурсы заводских газов зависят от глубины переработки углеводородного сырья. В производствах, процессы которых протекают под давлением водорода (риформинг, гидроочистка, изомеризация), образуются газы, не содержащие непредельных углеводородов, п их применение для сжигания в печах не вызывает затруднений. В то же время, состав побочных газов термических и некоторых каталитических процессов характеризуется заметным содержанием непредельных углеводородов. Их концентрация зависит, главным образом, от жесткости режима и в определенной степени от состава сырья и применяемых катализаторов. Входящая в состав заводских газов жирная часть (изобутан, этилены) является ценным исходным сырьем для получения высокооктанового бензина, а сухая часть (водород, метан п этан- -этилен) применяется в качестве технологического топлива. Заводские топливные газы, особенно с установок пиролиза бензина, необходимо подвергать очистке от непредельных углеводородов (фракций С4, С5 и диеновых соединений). Указанные непредельные углеводороды легко полимери-зуются и сополимеризуются с продуктами сероводородной коррозии и образуют плотные отложения в арматуре трубопроводов, в узлах газовых горелок и в капиллярах КИП. Это нарушает работу горелок или совсем выводит их из строя. [c.48]


    При гидроочистке из нефтяного дистиллята удаляются агрессивные и нестабильные соединения, содержащие серу, азот и кислород. При этом углеводородный состав топлива практически остается без изменения. В процессах гидрокрекинга и гидрирования наряду с очисткой исходного сырья происходит изменение его углеводородного состава (превращение непредельных соединений в насыщенные и ароматических углеводородов в нафтеновые). Применение гидрогенизационных процессов для производства реактивных топлив позволяет получить топлива повышенного качества (высокая термоокислительная стабильность, низкая коррозионная агрессивность) при одновременном расширении сырьевой базы производства. Однако в результате гидроочистки удаляются природные антиоксиданты, ухудшаются химическая стабильность и противоизносные свойства топлив. Для улучшения этих характеристик в такие топлива вводят антиоксиданты и противоизносные присадки. [c.187]

    Технологическая схема. Схема установки гидроочистки средних дистиллятов (керосиновой и дизельной фракций) приводится на рис. 3.9. Сырье, поступающее на установку, смешивается с водородсодержащим газом, проходит сырьевые теплообменники Т-1 и печь П-1, а затем подается в реакторы Р-1 и Р-2, где происходят реакции разложения гетероциклических (сернистых, азотистых, кислородсодержащих) соединений и гидрирование непредельных углеводородов. Продукты реакции через сырьевые теплообменники и холодильник Х-1 поступают в сепаратор высокого давления С-1. В С-1 отделяется циркулирующий водородсодержащий газ, который направляется на очистку от сероводорода. После очистки газ компрессором Л К-1 возвращается в систему циркуляции. Для поддержания заданной концентрации водорода часть циркулирующего газа отводится в заводскую топливную сеть. Гидрогенизат из сепаратора С-1 направляется в сепаратор низкого давления С-2, в котором выделяется растворенный углеводородный газ. Из сепаратора С-2 гидрогенизат поступает в колонну стабилизации К-1, с верха которой уходят пары бензина-отгона и газ. Сконденсировавшийся в конденсаторе-холодильнике ВХ-1 и охладившийся в холодильнике Х-2 бензин-отгон отделяется в сепараторе С-3 от газа и подается на очистку от сероводорода. Очистка производится методом щелочной промывки или отдувки углеводородным газом. Газ стабилизации, выделившийся в С-3, используется как топливо для собственных печей установки. Стабильный продукт с низа колонны через теплообменник Т-3 выводится с установки. [c.79]


    Гидроочистка, применяемая для обработки бензиновых, керосиновых и дизельных топлив в целях удаления сернистых соединений. Этот способ очистки проводится с помощью водорода при температуре 375—400° С и при давлении до 50 ат в присутствии ката-, лизатора. В результате происходящих реакций водород соединяется с серой и образуется сероводород, который выделяется и удаляется из системы с помощью щелочного раствора. Под действием водорода происходит также гидрогенизация непредельных углеводородов, которые переходят при этом в предельные. [c.262]

    МПа позволяет избавиться от сернистых и непредельных соединений, но приводит к получению бензола со значительным содержанием насыщенных углеводородов, что требует либо резкого усложнения ректификации, либо специальной дополнительной очистки бензола. Это определенный недостаток такой, так называемой среднетемпературной гидроочистки. Поэтому возник интерес к гидрогенизационным процессам, сочетающим гидрогенолиз сернистых и гидрокрекинг насыщенных соединений. Эти процессы отличаются значительно более высокими температурами (до 550 °С и даже до 580—620 °С), невысокими объемными нагрузками катализатора (0,5 ч ) и глубоким расщеплением насыщенных углеводородов (остаточное содержание не более 0,05-0,1 %). Однако повышение температуры (отсюда термин - высокотемпературная гидроочистка) вызывает образование кокса на катализаторе, а при высоких температурах (более 600 °С) и образование некоторых количеств вторичных непредельных соединений, которые приходится удалять методами адсорбции из очищенного продукта. Зато при этом получают бензол с температурой кристаллизации 5,46—5,5 и чистотой до 99,97 %. [c.311]

    Таким образом, гидрогенизационные процессы развиваются а двух основных направлениях I) безостаточная деструктивная переработка нефтяного сырья с целью получения продуктов меньшей молекулярной массы (гидрокрекинг) 2) глубокая очистка различных нефтяных фракций от непредельных и сернистых соединений (гидроочистка). [c.264]

    При разделении сырого бензола его вначале подвергают сернокислотной очистке или каталитической гидроочистке от непредельных и сернистых соединений, а затем путем ректификации с острым паром выделяют бензол, толуол, технический ксилол, растворители (сольвент, представляющий собой смесь три-метилбензолов, ксилолов и насыщенных углеводородов) и некоторые другие продукты. Кубовые остатки ректификации используют для получения стирол-инденовых полимерных смол. [c.143]

    Для очистки сырого бензола и его фракций от непредельных сернистых соединений в промышленности получили применение сернокислотная очистка и каталитическая гидроочистка [c.297]

    Значительно труднее осуществить гидроочистку бензинов вторичного происхождения, например процессов термического и термоконтактного крекинга, коксования и др. Эти продукты содержат много сернистых и азотистых соединений, а также непредельных углеводородов. Например, серы содержится до 1 вес. %, а йодное число может быть более 100 г Ь/ЮО г [46]. В эхом случае сырье, пригодное для каталитического риформинга на алюмоплатиновом катализаторе, можно получить при проведении гидроочистки в две ступени. Первую ступень осуществляют в тех же условиях, что и очистку прямогонных бензиновых фракций. На второй ступени гидроочистке подвергают гидрогенизат первой ступени. [c.79]

    С повышением температуры гидроочистки до 380° С вследствие углубления очистки сырья от сернистых и непредельных соединений расход водорода увеличивается (рис. 3). Дальнейшее повышение температуры процесса вызывает дегидрирование нафтеновых углеводородов, образуюш,ийся водород используется для обессеривания, в связи с чем уменьшается потребность в подводе свежего водорода. При температурах выше 410° С, несмотря на увеличение образования водорода за счет дегидрирования сырья, потребность в подводимом извне водороде снова возрастает из-за увеличения скорости реакций крекинга сырья. [c.38]

    Отходом кислотной очистки является кислый гудрон, а щелочной очистки — мылонафт (натриевая соль нефтяных кислот). Гидроочистка — каталитический метод очистки — заключается в обработке нефтепродуктов водородом в присутствии катализатора при 250—420° С и давлении 3—70 ат. При этом гидрируются непредельные соединения в предельные, а соединения, содержащие кислород и серу,— в воду и сероводород. [c.251]

    Каталитическая гидроочистка сырого бензо-л а. Более высокая степень очистки бензольных углеводородов от сернистых и непредельных соединений достигается при использовании метода каталитической гидроочистки. Процесс проводится при температуре 380—400° С под давлением водорода (18—20 ат) [c.113]


    При гидроочистке эти непредельные соединения, присоединяя водород, становятся насыщенными углеводородами. Склонность их к осмолению и полимеризации утрачивается потери при этом способе очистки отсутствуют, так как упомянутые углеводороды остаются в бензине. [c.724]

    Гидроочистка применяется для удаления сернистых соединений из бензиновых, керосиновых и дизельных фракций прямой перегонки высокосернистых и сернистых нефтей. Процесс гидроочистки осуществляется введением водорода при повышенном давлении (5 МПа) над катализаторами. При этом водород вытесняет серу в виде сероводорода. Гидроочистку применяют также и для очистки продуктов вторичного происхождения от непредельных соединений, которые, присоединяя водород, превращаются в предельные. [c.272]

    Гидрогенизационные процессы являются основой безостановочной деструктивной переработки нефтяного сырья (в том числе тяжелого) в нефтепродукты с меньшей молекулярной массой и, прежде всего, в моторное и реактивное топливо. При этом необходимо извне вводить в процесс водород. Гидрогенизационные процессы в мире развиваются по двум основным направлениям деструктивная переработка нефтяного сырья с целью получения моторных и реактивных топлив, масел и других нефтепродуктов (гидрокрекинг) и глубокая очистка различных нефтяных фракций от непредельных и сернистых соединений (гидроочистка). [c.182]

    Гидроочистка дистиллятов от сернистых соединений и непредельных углеводородов является одной из разновидностей гидрогенизационных процессов, проводимой при менее жестких технологических режимах по давлению и температуре, а также меньшем расходе водорода. Аппараты гидроочистки широко используются для очистки бензиновых, керосиновых и дизельных фракций, дистиллятов каталитического крекинга и масляных фракций. [c.401]

    Основные параметры процесса. Гидроочистке подвергают дистилляты различного фракционного и химического состава, поэтому параметры режима и расход водорода весьма различны. Более легкие дистилляты, например бензины, легче подвергаются гидроочистке в соответствии с характером содержащихся в них сернистых соединений (меркаптаны, сульфиды) и более низкомолекулярных непредельных. С утяжелением сырья в нем появляются более стабильные сернистые соединения (например, тиофены) и труднее гидрируемые непредельные, если это сырье вторичного происхождения. В то же время при утяжелении сырья требования к содержанию серы в гидроочи-щенном продукте снижаются. Так, допустимое содержание серы в бензине, поступающем после гидроочистки на установку риформинга, составляет тысячные доли процента содержание серы в реактивном топливе не должно превышать 0,05 мае. %, в дизельном - 0,2 мае. %. Последняя цифра также должна быть доведена скоро до величины 0,05 мае. %. Это обстоятельство несколько нивелирует режимы очистки сырья различного фракционного состава. [c.69]

    Более легкие дистилляты, например бензины, легче подвергаются гидроочистке в соответствии с характером содержащихся в иих сернистых соединений (меркаптаны, сульфиды) и более низкомолекулярных непредельных. С утяжелением сырья в нем появляются более стабильные сернистые соединения (например, тиофены) и труднее гидрируемые непредельные, если это сырье вторичного происхождения. В то же время при утяжелении сырья требования к содержанию серы в гидроочищенном продукте снижаются. Так, допустимое содержание серы в бензине, поступающем после гидроочистки на установку риформинга, составляет тысячные доли процента содержание серы в реактивном топливе не должно превышать 0,05%, в дизельном 0,2-%. Это обстоятельство несколько нивелирует режимы очистки сырья различного фракционного состава. [c.239]

    Легкие дистилляты (бензины) содержат более низкомолекулярные непредельные и сернистые соединения (меркаптаны, сульфиды) и легче подвергаются гидроочистке. Тяжелое сырье и сырье вторичного происхождения содержит более стабильные сернистые соединения (тиофены) и труднее гидрируемые непредельные, что требует более жестких условий очистки. [c.41]

    Распространенным типом неорганических адсорбентов является активный оксид алюминия. Данный адсорбент применяется в процессах нефтепереработки, таких как риформинг, гидроочистка, гидрокрекинг (в которых используются катализаторы, содержащие 80-99 % оксида алюминия). Активный оксид алюминия используется также для адсорбционной осушки газов, для сорбции непредельных углеводородов, в процессах адсорбционной очистки масел, прежде всего трансформаторных, от кислот — продуктов окисления масел, в процессах адсорбционной очистки газовых и жидкостных потоков от соединений, содержащих фтор-ионы и т. п. [c.374]

    Цели процессов гидрооблагораживания весьма разнообразны. Моторные топлива подвергают гидроочистке с целью удаления гетероорганических соединений серы, азота, кислорода, мышьяка, галогенов, металлов и гидрирования непредельных углеводородов, тем самым улучшения эксплуатационных их характеристик. В частности, гидро-очистка позволяет уменьшить коррозионную агрессивность топлив и их склонность к образованию осадков, уменьшить количество токсичных газовых выбросов в окружающую среду. Глубокую гидроочистку бензиновых фракций проводят для защиты платиновых катализаторов риформинга от отравления неуглеводородными соединениями. В результате гидрообессеривания вакуумных газойлей — сырья каталитического крекинга — повышаются выход и качество продуктов крекинга [c.303]

    Применение в качестве вытеснителя нефтепродуктов с различными пределами температур кипения и ведение процесса в сравнительно мягких рабочих условиях позволяет использовать сырье до С22 без заметного разложения н-алканов, а следовательно, и без последующей их очистки. Поскольку при температуре, поддерживаемой в процессе, крекинга компонентов сырья можао избежать, в случае тщательно очищенного сырья выжиг с адсорбента коксообразных веществ необязателен. Однако высокая активность цеолита в условиях длительной работы без регенерации или замены сохраняется лишь при использовании высокоочищенного сырья. Поэтому сырье для жидкофазного процесса нужно подвергать глубокой гидроочистке. Присутствие в контактируемом с синтетическими цеолитами сырье полярных кислород-, серу-, азот- и никельсодержащих примесей, а также непредельных соединений приводит к блокировке ими. входных окон в полости цеолитов за счет электростатических сил притяжения, имеющих весьма высокие значения при температуре жидкофазного процесса [12, 14, [c.201]

    Установка типа 35-6. Установка предназначена для получения бензола и толуола из фракций 62—105°С или только бензола из фракции 62—85°С. Мощность установки 300 тыс. т/год. В схеме установки (рис. 40) не предусмотрена гидроочистка сырья. В на-I стоящее время все такие установки дооборудованы отдельными блоками гидроочистки. Схема блока гидроочистки такая же, как и на установке 35-11. Для обеспечения селективной и стабильной работы катализатора сырье должно подвергаться глубокой очистке от сернистых и азотистых соединений, а так же от воды. Гидро-очищенное и тщательно осушенное сырье, содержащее серы не более 0,0005 вес. % (5 ррт), в смеси с циркулирующим газом (влажность газа не более 30 мг1м ) подвергается риформингу в трех последовательно включенных реакторах. Нагрев исходной смеси и межреакторный ступенчатый подогрев осуществляют в многокамерном огневом трубчатом подогревателе. Так как установка предназначена для получения ароматических углеводородов, в схему включен реактор для гидрирования содержащихся в дистилляте непредельных углеводородов. Реакция гидрирования протекает при 280—320 °С. Стабильный дистиллят направляется на выделение ароматических углеводородов. Поскольку проектная схема не предусматривала блока гидроочистки, на установке имеется система очистки циркулирующего газа от сероводорода раствором моноэтаноламина и осушки газа диэтиленгликолем. При эксплуатации установки с блоком гидроочистки эти секции выключаются из работы. [c.101]

    Бензины термического крекинга и коксования содержат до 40% непредельных соединений, более 1% С(фы н 0,01—0,001% азота. Гидроочистка таких продуктов осуществляется труднее. Количество непредельных соединений в результате процесса сокращается до 0,5—1,5%, содержание серы снижастся до 0,01%. Для использования этого бензина в качестве сырь риформинга требуется дополнительная очистка от сернистых соединений. [c.303]

    Совокулность указанных причин воспрепятствовала широкому распространению способа глубокой очистки бензола от тиофена с применением моногидрата серной кислоты и олеума. За рубежом этот способ применялся на нескольких установках, пока сернокислотная очистка вообще не была вытеснена каталитической гидроочисткой под давлением. В Советском Союзе, где сернокислотный способ до сих пор сохраняет ведущее положение при производстве коксохимического бензола, сульфирующая очистка сохранила значение только в относительно малотоннажном производстве реактивов. Повсеместное распространение, в том числе при производстве бензолов высшей чистоты, имеет очистка с применением присадок непредельных соединений, позволяющая работать с 93—94%-ной серной кислотой, обычно используемой в цехах переработки сырого бензола. [c.216]

    В качестве сырья для каталитической гидрогенизационной очистки нафталина используют нафталиновые фракции, получаемые при фракционировании каменноугольной смолы. В них в качестве примесей присутствуют фенолы, основания, непредельные соединения, сернистые соединения и смолистые вещества. Для процесса гидроочистки азотистые основания являются кумулятивными ядами, отравляющими катализатор [6, 7], а также образующими при гидрогенолизе аммиак, который необходимо извлекать из циркуляционного газа. Непредельные соединения и смолистые вещества представляют собой основной источник образования отложений на стенках теплообменной аппаратуры и на катализаторе. Фенолы не влияют на процесс гидрогенизационной очистки, однако на их гидрогенолиз расходуется водород к тому же их целесообразно выделять из исходного сырья как ценный продукт. Радикальный способ подготовки сырья к гидрогенизационной очистке— четкая ректификация исходной нафталиновой фракции. Как показано в работе [6], технический нафталин (содержащий 0,8% фенолов, 0,2% оснований, 0,1% -непредельных соединений и до 0,03% метилнафталпнов) можно получить ректификацией нафталиновой фракции на колонне разделительной способностью 30 т. т. В техническом нафталине сосредоточивается 977о от его содержания в исходном сырье. [c.282]

    Помимо сернокислотной очистки используют каталитическую гидроочистку БТК, заключающуюся в гидрировании непредельных 8,Н,0-содержащих соедииений в присутствии катализаторов (обычно, алюмоко-бальтмолибденовых) при давлении 3-4 МПа и температуре 250 - 380"С. Расщепление гетероциклических соединений сопровождается выделением НгЗ, Шз, Н2О. [c.65]

    Под гидроочисткой понимаются процессы присоединения водорода (гидрирование) к органическим веществам без изменения их углеводородного скелета. Гидрирование возможно как для неиределыных, так и для ароматических соединений. Термодинамические данные показывают, что гидрирование является низкотемпературным процессом. Обычно гидроочистка применяется д. тя очистки бензинов крекинга от непредельных соединений (алкенов, алка-диенов. цикленов и т. п.) и имеет целью получение моторного топлива, стабильного при хранении. [c.285]

    В процессе гидроочистки все непредельные соединения гидрируются до предельных, а сернистые соединения — до сероводорода, который затем легко удаляется из топлив фенолятной или этанол-аминной очисткой. В настоящее время процесс гидроочистки нсполь- [c.206]

    Смесь достаточно четко отобранных бензольной, толуольной и ксилольной фракции может подвергаться гидроочистке без предварительной термополимеризации, так как не содержит легко осмоляющихся примесей. В процессе каталитической гидроочистки больше никаких потерь нет, так как непредельные соединения в результате гидрирования переходят в насыщенные углеводороды, образующие совместно с ароматикой ценные сольвенты (растворитель), а бензольные углеводороды при очистке не затрагиваются. Поэтому при каталитической гидроочистке выход продуктов обычно на 2—5% больше, чем при сернокислотной очистке. Это обстоятельство, наряду с большой чистотой получаемых продуктов, должно компеноировать высокую стоимость установки по каталитической гидроочистке и больпхие эксплуатационные расходы процесса и сделать последний экономически рентабельным. [c.348]

    Износы дизельных двигателей в значительной степени определяются содержанием в топливе сераорганических и непредельных соединений. О максимально допустимом содергкании серы в дизельных топливах в литературе нет единой точки зрения [1—4]. Мы согласны с Андриановым и Хохряковым [4], что стремление ряда авторов ограничить содержание серы в дизельных топливах не более 0,2% экономически не оправдано. Исходя из имеющихся в литературе данных, следует считать, что при содержании серы в дизельном топливе порядка 0,4—0,6 % экономические показатели с учетом как стоимости производства топлива, так и стоимости самого двигателя и эксплуатационных расходов будут близкими к оптимальным. Наиболее эффективными методами очистки дизельных топлив являются гидроочистка и автогидроочистка [5—13]. [c.97]

    Кинетика процесса гидроочистки зависит от молекулярного веса и типа сернистых соединений, содержащихся в сырье. Легче всего удаляются сернистые соединения из прялгогонных бензино-керосиновых фракций, селективная очистка которых проходит с большими скоростями. Труднее очищаются от серы дизельные фракции, особенно фракции это-, ричного происхождения, содержащие тиофоновую серу [29]. Одновременно с основными реакциями гидрирования сернистых и насыщения непредельных соединений нрп гидроочистке протекают также сопутствующие реак-. ции, к которым относятся гидрокрекинг, изомеризация алкановых и нафтеновых углеводородов, гидрирование ароматических углеводородов в нафтены, что проявляется в повышении цетапового числа продукта, п другие. [c.35]

    Сырье (рис. 70), подлежащее гидроочистке, смешивается с водородсодержащим газом, нагревается в теплообменниках Т-1, Т-2 и печи П-1 и поступает в каталитические реакторы Р-1 и Р-2. В реакторах происходит разложение гетероциклических соединений и гидрирование непредельных углеводородов. Продукты реакции вместе с водородсодержащим газом охлаждаются в рекуперативных теплообмергниках Т-1, Т-2 и холодильнике Х- . В сепараторе высокого давления С-1 отделяется газовая фаза и направляется в установку очистки от сероводорода. Жидкая фаза из С-1 направляется в сепаратор низкого давле- [c.222]

    Температура. С повышением температуры скорость реакций гидрирования увеличивается. Однако при применяемых обычно да влениях повышение температуры выше 400—420 °С ограничивает возможную степень очистки термодинамическим равновесием гидрирования тиофенов и, вероятно, азоторганических соединений типа хияолииа, бензхинолина и др. Повышение температуры увеличивает скорость гидрокрекинга на алюмокобальтмолибденовом катализаторе, проходящего со значительно более высокой кажущейся энергией активации — 190—250 кДж/моль (45— 60 ккал/моль), чем гидроочистка. Увеличивается также термодинамически возможный и реально достигаемый выход непредельных углеводородов и продуктов дегидрирования полициклических нафтенов. В зависимости от качества исходного сырья и требуемого качества очищенного продукта применяют температуры 250—420°С минимальные температуры применяют тогда, когда недопустимы реакции гидрокрекинга и дегидрирования. [c.269]

    При повышении температуры гидроочпсткп арланского вакуумного газойля с 380 до 4]0°С выход основных продуктов крекинга практически не изменяется, а зависит лишь от объемной скорости подачи сырья в стадии гидроочистки. По мере углубления очистки сырья улучшается и качество продуктов каталитического крекинга. В бензинах значительно уменьшается содержание сернистых соединений и непредельных углеводородов, увеличивается содержание ароматических углеводородов. В легком каталитическом газойле уменьшается содержание сернистых соединений, количество сульфирующихся и подное число. [c.200]

    Бензиновые фракции, получаемые при производстве этилена, пропилена, бутилена, бутадиена пиролизом углеводородных газов и низкооктановых бензинов, содержат 40—65 вес. % ароматических, около 20 вес. % олефиновых и 10—15 вес. % диолефиновых углеводородов. Применение их в качестве компонента автомобильного бензина или сырья для получения ароматических углеводородов без предварительной очистки невозможно из-за высокого содержания в них моно- и главным образом диолефинов, а также примесей сернистых, азотистых и кислородсодержащих соединений. Облагораживание таких бензинов методом селективной гидроочистки было проведено на сульфидном вольфрамникелевом, алюмокобальтмолибденовом, алюмоникелевом и алюмопалла-диевом катализаторах [32, 46—49]. Результаты облагораживания на двух последних (низкотемпературных) катализаторах показали, что оптимальное содержание палладия в катализаторе составляет 0,5, а никеля — около 10 вес. % [46—49]. В присутствии алюмопалладиевого катализатора глубина гидрирования непредельных углеводородов повышается с увеличением температуры, давления и с уменьшением удельной объемной скорости подачи сырья. Зависимость глубины гидрирования непредельных углеводородов от давления и удельной объемной скорости подачи сырья показана на рис. 44 [47]. [c.199]

    Гидроочистка предназначена для снижения содержания серы в дистиллятах. На НПЗ строятся установки гидроочистки прямогонных бензиновых фракций (обычно комбинируются с установками риформинга), керосиновых и дизельных фракций, вакуумных дистиллятов, масел, вторичных бензинов. Одновременно с удалением серы уменьшается содержание в продуктах непредельных и смолистых соединений. Процесс гидроочистки разработан во ВНИИНП. Для проектирования установок выдаются следующие данные характеристика сырья и продуктов очистки, тип катализатора, рекомендуемые режимы работы в циклах реакции (температура, давление, объемная скорость подачи сырья, кратность циркуляции водородсодержащего газа, содержание водорода в циркулирующем газе,. продолжительность цикла реакции, срок службы катализатора, тепловой эффект реакции) и регенерации. [c.41]

    Каталитический риформинг бензинов термических процессов на платиновом катализаторе является другим вариантом облагораживания бензинов со значительным улучшением их моторных качеств. Для этого бензин подвергают предварительной глубокой гидроочистке для удаления примесей, т. е. ведут процесс при жестких условиях. В результате лабораторных исследований и промышленных испытаний требуемая степень очистки вторичных бензинов достигалась только при 400—420 °С, общем давлении 4 МПа и объемной скорости подачи сырья 0,5 ч" . Содержание серы в гидроочиш ен-ном бензине составляло 0,003—0,005%, практически отсутствовали смолы, непредельные углеводороды и соединения азота. Октановое число бензинов при этом резко снижалось. Расход водорода по сравнению с избирательной неглубокой гидроочисткой увеличивается примерно в два раза. Результаты гидроочистки бензина термоконтактного крекинга гудрона ромашкинской нефти, качественные характеристики исходного бензина и более узких фракций до и после гидроочистки приведены в табл. 30, стр. 158 (19, с. 215]. [c.81]

    Применяются также гидроочистко—ограниченная гидрогенизация нефтепродукта с превращением непредельных примесей в насыщенные соединения и сернистых в легко удаляемый сероводород. С процессами очистки связаны также освобождение масел от твердого парафина (депарафинизация) и от асфальтовых веществ деасфальтизация). [c.56]

    Описываемая установка включает блок предварительной гидроочистки сырья, который позволяет перерабатывать сырье с содержанием серы боле е 0,1%, а также непредельные бензины термического крекинга и коксования. Образующийся при гидроочистке сероводород удаляется очисткой циркуляционного газа и углеводородных газов гидроочистки моноэтаноламином. Установка включает также блоки физической стабилизации и газо-фракционирования. Сырье насосом 1 под давлением около 50 ат в смеси с обессеренными водородсодержащими газами риформинга и гидроочистки, нагнетаемыми компрессорами 9 и 18, проходит через теплообменники 2, где нагревается продуктами гидроочистки до 260° С, и поступает в печь 3, в которой нагревается до 425° С. Из печи 3 пары сырья поступают в реактор гидроочистки 4, где в присутствии алюмокобальт-молибдено-вого катализатора сернистые соединения сырья превращаются [c.192]

    Глубокая очистка бензола от непредельных, сернистых соеди нений и насыщенных углеводородов предусматривается в установках высокотемпературной гидрогенизации фракций БТК, экс-, трактивная ректификация применяется в установках среднетемпературной гидроочистки Предусматривается также внедрение рациональной схемы подготовки сырого бензола к переработке, предполагающей разделение сырого бензола (до 180 °С) на узкие фракции, и создание наиболее выгодной технологии очистки бензола для синтеза, рациональное использование смолообразующих соединений сырого бензола Ведутся исследования по интенсификации сернокислотного метода очистки путем сочетания парофазной сернокислотной очистки с экстрактивной ректификацией, позволяющей выделить тиофеновую фракцию и насыщенные соединения, имеющие ценность для органического синтеза [c.322]


Смотреть страницы где упоминается термин Очистка непредельных соединений Гидроочистка : [c.227]    [c.230]    [c.282]    [c.322]    [c.27]    [c.75]    [c.149]    [c.403]   
Новые процессы органического синтеза (1989) -- [ c.44 , c.45 , c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Соединения непредельные



© 2025 chem21.info Реклама на сайте