Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворяющая способность и растворимость нефти и углеводородов

    Растворяющая способность и растворимость нефти и углеводородов. Нефть и жидкие углеводороды хорошо растворяют иод, серу, сернистые соединения, различные смолы, растительные и животные жиры. Это свойство широко используется в технике. Нефтеперерабатывающая промышленность выпускает специальные бензиновые фракции в качестве растворителей для резиновой, маслобойной, лакокрасочной и других отраслей промышленности. [c.51]


    Высокомолекулярные парафиновые углеводороды плохо растворяются в пиридине, причем растворимость возрастает с уменьшением молекулярного веса парафиновых углеводородов. В пиридине, содержащем 3,5—5% воды, растворимость парафинов более низкая, чем в смесях ацетон — бензол — толуол и дихлорэтан — бензол, применяемых в промышленных процессах депарафинизации. Ароматические углеводороды растворяются в обводненном пиридине наиболее легко, при этом растворяющую способность и селективность пиридина можно изменять добавлением определенного количества воды. Так, при экстракционном разделении фракции 240—310° С анастасьевской нефти (табл. 1) содержание ароматических углеводородов в экстрактах возросло на 25—30% нри увеличении содержания воды в пиридине с 6—7 до 10%, а выход экстракта уменьшился. С увеличением соотношения растворитель сырье выход экстракта увеличился, а содержание в экстракте ароматических углеводородов изменилось незначительно. [c.338]

    В масляных фракциях нефти слабо растворяются твердые углеводороды. Они способны выделяться при охлаждении этих фракций в виде кристаллов. Растворимость уменьшается с увеличением молекулярного веса твердых углеводородов, повышением их концентрации и температуры кипения масляных фракций. С повышением температуры растворимость парафинов и церезинов увеличивается и при температуре плавления они смешиваются со всеми нефтяными фракциями во всех соотношениях. [c.90]

    Изучена растворимость ОСС в сернистом ангидриде [107]. Сернистый ангидрид — широко распространенный растворитель ароматических углеводородов. Применение его для экстракции ОСС нефти представляется весьма перспективным, поскольку это полупродукт многих нефтеперерабатывающих заводов. Между тем селективность сернистого ангидрида в отношении ОСС в присутствии ароматических углеводородов исследована недостаточно. С целью сопоставления экстракционной способности сернистого ангидрида изучено фазовое равновесие системы тиофан—м-ксилол— нонан—сернистый ангидрид [107]. Равновесный состав фаз данной системы в зависимости от содержания в исходном растворе экстрагируемых веществ приведен в табл. 9 и показывает, что К(. тиофана выше, чем коэффициент распределения ароматического углеводорода К у м-ксилола. [c.29]

    Изучение растворяющей способности кетонов на примере твердых углеводородов, выделенных при обезмасливании гача малосернистых нефтей [157], дало возможность, используя зависимость растворимости парафина от температуры раствора, расположить исследованные растворители по их растворяющей способности в ряд  [c.84]


    При высаживании асфальтенов из раствора наблюдается увлечение вместе с ними некоторого количества углеводородов и смол, растворимых в данном растворителе при температуре высаживания, причем часть из них захватывается механически, а часть удерживается внутри агрегированных мицелл вследствие частичной сорбции вместе со смолами. Дрисутствие углеводородов в мицеллярной оболочке можно объяснить дисперсионными силами, возникающими между молекулами смол и углеводородо-в. На поверхности мелкодисперсных твердых частиц асфальтенов смолы сорбируются таким образом, что полярная часть их молекул обращена в сторону ядра коллоидной мицеллы, а неполярная — в сторону дисперсионной среды. В то же время вследствие упорядоченности неполярных частей молекул смол и влияния дисперсионных сил между ними встраиваются молекулы углеводородов. Так как в остатках нефтей содержится больше смол, чем необходимо для пептизации асфальтенов, вероятно образование поли-молекулярных мицеллярных оболочек, в результате чего углеводороды прочно удерживаются между чередующимися молекулярными слоями полярных соединений (смол). Извлечь эти углеводороды можно, полностью разрушая молекулярные оболочки коллоидных мицелл растворением смол многократной коагуляцией или отмывкой. Выше КТРг вследствие ограниченной растворяющей способности пропана по отношению к смолам происходит их выделение из раствора. Выделяющиеся смолы растворяют полициклические ароматические углеводороды и, таким образом, относительно раствора углеводородов выполняют роль селективного растворителя, несмешивающегося с пропаном. [c.67]

    Конечно, пигментные краски на основе высыхающих масел не должны растворяться в связующем. Прочность к различным растворителям — необходимое качество пигментов и особенно нитроцеллюлозных, спиртовых и глифталевых лаков. Необходимо, чтобы они не вымывались спиртом, ацетоном, бутилацетатом, толуолом, ксилолом, гликолевым эфиром и углеводородами нефти. Пигменты, используемые в текстильной печати, не должны изменяться при сухой чистке трихлорэтиленом. Отсутствие растворимости в пластификаторах — важное свойство пигментов, применяющихся в пластифицированных лаках и для крашения пластифицированных пластмасс. Пигмент должен быть особенно прочным к пластификаторам поливинилхлорида (в частности, к ди-октилфталату), обладающим высокой растворяющей способностью. Отсутствие растворимости в еще более эффективных растворителях типа диметилформамида обычно не требуется. Пигментов, нерастворимых в диметилформамиде, очень мало, но тем не менее в некоторых случаях (акриловые ткани) они могут представить практический интерес. [c.287]

    Растворимость веществ в сжатых газах достигает значительных величин. Так, в одном 1 нм этилена при 2000 ат растворяется до 3 кг смазочного масла. Азот нри 100° и 1000 ат растворяет до 10 мол. % бензола, а этилен при 240 ат и 50° — до 17 мол. % нафталина. Водяной пар при давлениях и темп-рах, превышающих его критич. параметры, растворяет значительные количества солей, что является причиной образования твердых отложений на лопатках паровых турбин. Аналогичные процессы растворения в водяном паре были причиной возникновения горных ио-род, содержащих 2и, У, Си, Мо и др. Большие количества жидких углеводородов растворяются в газе, находящемся в соприкосновении с нефтью на больших глубинах. Способность сжатых газов растворять вещества используют в технике. Растворимостью кварца в водяном паре, насыщенном нек-рыми солями, пользуются для выращивания кристаллов кварца весом в несколько килограммов. Аналогичным методом синтезируют нек-рые минералы (гидротермальный синтез). Предложен метод разделения жидких смесей, основанный на различной растворимости фракций жидкой смеси в сжатых газах. [c.379]

    Чем выше температура плавления твердых углеводородов, тем выше температура растворения их в нефтяных фракциях, из которых они выделены [2, с. 72] (рис. 3). Растворимость твердых углеводородов в углеводородных растворителях зависит от молекулярной массы последних [3], причем эта зависимость экс1 ре-мальна (рис. 4). Растворяющая способность сжиженных углево-дО родных газов уменьшается три переходе от бутана к этану. Была исследована [3] растворимость в сжиженном пропане твердых углеводородов, выделенных из 50-градусных фракций грозненской нефти, выкипающих в пределах 300— О С (рис. 5). Результаты этого нсследования иллюстрируют влияние температуры плавления, а следовательно, молекулярной массы твердых углеводородов на их растворимость в неполярном растворителе. В области низких температур сжиженный пропан практически не растворяет твердые углеводороды, что позволяет [c.46]

    Асфальтены нерастворимы в парафиновых углеводородах, В нефтях и нефтяных остатках они находятся в состоянии коллоидной растворимости под действием присутствующих там поверхностно-активных смол. При добавлении в остатки определенного количества легких парафиновых углеводородов асфальтены коагулируют и осаждаются из раствора. Установлено, что селективными по отношению к асфальтенам являются парафиновые уг- леводороды, жидкие при комнатной температуре и атмосферном давлении (пентаны, гексаны, гептаны и т. д.). Процесс Добен основан на этой способности легких парафиновых углеводородов коагулировать и осаждать асфальтены. [c.144]


    Фурфурол — гетероциклический альдегид фуранового ряда. Фурфурол относится к числу избирательных растворителей с малой растворяющей способностью и высокой селективностью. Из соединений, входящих в состав нефтяных фракций, наиболее растворимы в фурфуроле ароматические углеводороды, весьма слабо растворимы парафиновые углеводороды и менее всего растворимы асфальтово-смолистые соединения. При обычных температурах до 30—40° в фурфуроле хорошо растворяются только ароматические углеводороды, содержащиеся во фракциях нефти, кипящих ниже 350—400°. Высокомолекулярные полициклические углеводороды масляных фракций растворяются в фурфуроле достаточно хорошо лишь при повышенных температурах (выше 60—80°). Смолистые соединения даже при нагреве растворяются сравнительно плохо, а асфальтены практически не растворимы в фурфуроле . При иизких температурах (порядка минус 15° — минус 25°) фурфурол настолько плохо растворяет твердые углеводороды, что последние могут быть осаждены из раствора и таким путем можно депарафинироватъ масла [26]. [c.152]

    На степень п скорость разложения нефти влияет физическая форма, в которой нефть присутствует в морской среде. Степень, до которой углеводороды растворяются в морской воде, может выступать в качестве основного регулирующего фактора в их бподеградации. Высказывается мнение [25], что действительная проблема заключается не в доступности углеводородов, а в помещении на прежнее место разрушенных молекул, иначе говоря, в скорости растворения в воде. Растворимость углеводородов в воде является низкой и уменьшается с увеличением молекулярного веса. Определена [26] растворимость различных п-алканов со средней длиной цепи при температуре 25° С. Насыщенный раствор тетрадекана, например, имеет молярную концентрацию только 9,8ХЮ °, что составляет около 2Х 10 мг/л. Эмпирически показано [27], что. морская вода настолько снижает растворимость нефти по сравнению с пресной, что количество углеводородов в растворе на единицу объе.ма слишком незначительно для бактериального воздействия. Способность организма перемещать растворимое вещество может поэтому ограничивать скорость окисления. Этим, вероятно, [c.138]

    О действии серной ] и( лоты на углеводороды нефти ...Мак-Ки (1912 г.) опубликовал интересно наблюдение, по которому при очень сильном размешивании (мешалкой, делающей 900 об/мип) парафиновые углеводороды уже нри комнатной температуре и с обыкновенной крепкой Нз304 реагиру.эт с образованием сульфокислот... По опытам Зентке в лаборатории Энглера метановые углеводороды, начиная с пентана и выше, при сильном встряхивании заметно растворяются уже в крепкой НдЗО даже без нагревания постоингкю выделение ЗОз указывает па то, что мы имеем дело не с простым растворением, а с химической реакцией. Мне представляется вероятным, что реагирование предельных углеводородов с кислотой при энергичном встряхивании обусловливается тем, что от углеводородов при этом отрываются чрезвычайно мелкие каили и 1то нри очень малых размерах капель способность ясидкости к химическому реагированию возрастает так же, как и растворимост . и испаряемость... [13]. [c.29]

    Асфальтены, таким образом, являются продуктами конденсации и полимеризации смол. Своим отношением к растворителям и весьма высоким молекулярным весом (до нескольких тысяч) асфальтены резко отличаются от смол, они способны растворяться в ароматических углеводородах, хлороформе, сероуглероде, нефтяных смолах, причем при растворении не наблюдается образования насыщенных растворов. Асфальтены не растворимы в легких нефтяных фракциях (петролейном эфире). В нефтях асфальтены находятся в высокодисперсном состоянии, степень дисперсности их зависит от соотношения ароматических углеводородов и смол, в которых асфальтены растворяются, и метановых и нафтеновых углеводородов, в которых они почти нерастеоримы. Поэтому ас- [c.25]

    Т. кип. 20—120° не смешиваются с водой. Представляют собой низкокипящие фракции нефти, содержащие ненасыщенные углеводороды широко применяются в качестве растворителей для кристаллизации многих соединений. В некоторых случаях нх применение нежелательно вследствие способности к реакции с кристаллизуемым веществом. Большую часть ненасыщенных соединений можно удалить путем встряхивания с концентрированной серной кислотой, после чего делают пробу с лодкисленным перманганатом если при этом перманганат обесцвечивается, то растворитель следует встряхивать с раствором перманганата калия и серной кислоты до разрушения окисляемых веществ. Затем растворитель промывают водой, сушат над хлоридом кальция и перегоняют. Не рекомендуется применять фракцию, интервал кипения которой больше 30°, так как растворение твердого вещества сопряжено с некоторой потерей более летучей части растворителя и вещество, лучше растворимое в высококипящем остатке, может не выкристаллизоваться. В продаже имеются гексановые фракции с узким интервалом кипения. Перекиси можно удалять пропусканием через колонку с окисью алюминия. [c.326]

    Такое представление механизма формирования отложений предполагает наличие в нефти какого-то количества молекулярно растворенных избыточных парафиновых углеводородов, способных выделиться из раствора и формировать новую твердую фазу. Предполагаемая ситуация вполне вероятна, когда происходит непрерывное изменение термодинамических условий, приводящее к снижению растворимости твердых парафиновых углеводородов в нефти, которое имеет место в подземных трубах скважин. Однако этот механизм не может объяснить процесс формирования отложений в выкидных линиях скважин в таких случаях, когда в них не происходит изменения термодинамических условий, приводящею к ухудшению растворимости парафинов, и прокачиваемая дисперсная система находится в состоянии определенной агрега-тивной устойчивости. Применение указалного механизма к последнему случаю привело бы к необходимости допущения возможности перераспределения части парафиновых углеводородов из частиц дисперсной фазы в пользу вновь образующейся на поверхности стенки твердой фазы через стадию перехода в состояние молекулярного раствора. Однако имеющийся экспериментальный материал не указывает на правомерность такого допущения. [c.63]

    Образование органических нефтяных отложений в любой форме возможно лишь после возникновения в нефти диспергированной твердой микрофазы. Можно считать, что нефть в пластовых условиях, при которых она пребывает практически неограниченное время, обладает высокой агре-гативной и седиментационной устойчивостью. Как показывает практика /61/, пластовая температура нефти, как правило, ниже температуры плавления асфальтенов и выше температуры плавления основной массы углеводородов, в том числе и парафинов. Поэтому в общем случае можно полагать, что в пластовых условиях в нефти парафины находятся в виде ненасыщенных молекулярных растворов, тогда как асфальтены, ввиду их ограниченной растворимости и способности к ассоциации, - в насыщенном коллоидном состоянии. Высказанное предположение косвенно подтверждается зависимостями на рис.3.1 и 3.2, которые получены в результате обработки данных по 79 нефтям месторождений Коми, Перми, Башкирии и Татарии /29/. [c.117]

    Нефтью называется природная смесь углеводородов различных классов с различными сернистыми, азотистыми и кислородными соединениями. По внешнему виду нефть представляет собой маслянистую жидкость, обыкновенно бурого цвета, хотя встречаются нефти, имеющие более светлые оттенки коричневого цвета. Вязкость нефти различна и зависит от состава. Представляя собой смесь органических веществ, нефть способна гореть, выделяя при этом до 10 ООО калорий на килограмм. В минералогическом отношении нефть относится к числу горючих ископаемых или каустобиолитов. Нефть практически ие содержит химически активных веществ вроде кетонов, спиртов и т. п. соединений, хотя в некоторых случаях имеет кислотный характер вследствие незначительного содержания кислот. Все химические свойства нефти показывают, что нефть никогда не подвергалась действию высоких температур и поэтому для нее нехарактерны обычные компоненты, свойственные различным продуктам перегонки углей, торфа и других естественных горючих материалов. Нефть часто сопровождается в природе различными окаменелостями, позволяющими определить геологический возраст нефти в ее современном залегании. Обыкновенно нефть сонровояодается газом и водой, представляющей собой раствор галоидных и углекислых растворимых солей, иногда в воде содержатся сероводород и растворимые сульфиды. [c.5]

    Аналогичная картпна наблюдается и для смесей дихлорэтана, ацетона, метилэтилкетона и другпх растворителей с бензолом и толуолом. Увеличение длины углеводородного радикала в молекулах растворителей, например в кетонах, позволяет достичь такого же эффекта, т. е. полной растворимости углеводородов масла при низких температурах, при которых твердые углеводороды растворяются крайне незначительно. В этом случае увеличение длины углеводородного радикала кетона, повышая его дисперсионный эффект, заменяет добавление бензола пли толуола к таким кетонам, как ацетон или МЭК. Добавление примесей к неполярным растворителям, в частности к сжиженному пропану, в ряде случаев резко сказывается на растворимости в нем углеводородов и смолистых веществ нефти. Н. Ф. Богданов делит примеси и добавки, которые могут присутствовать в пропане, на две группы. Одна группа веществ понижает растворяющую способность пропана. Сюда относятся, например, метан, этан и некоторые спирты. Вторая группа соединений повышает эту способность это бутан, пентан и другие высшие гомологи метана, олефины и полярные растворители, применяемые в переработке нефтяных фракций. [c.107]

    Асфальтены являются высококонденсированными веществами. Своим отношенивхМ к растворителям и высоким молекулярным весом эсфадьтены резко отличаются от смол. Они способны растворяться в ароматических углеводородах, хлороформе, нефтяных смолах, причем при растворении не наблюдается образования насыщенных растворов. J фaльтeны не растворимы в петролейном эфире и изопентане. В нефтях асфаль- [c.54]


Смотреть страницы где упоминается термин Растворяющая способность и растворимость нефти и углеводородов: [c.193]    [c.104]    [c.193]    [c.75]    [c.58]    [c.65]    [c.96]    [c.73]    [c.16]    [c.341]    [c.344]    [c.763]    [c.803]    [c.497]   
Смотреть главы в:

Химия нефти и газа -> Растворяющая способность и растворимость нефти и углеводородов




ПОИСК





Смотрите так же термины и статьи:

Растворимость и растворяющая способность

Способность pH раствора



© 2024 chem21.info Реклама на сайте