Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент степень

    Ионный характер связи, выраженный через степень ионности в процентах, указан для нескольких молекул в табл. 12-3. Согласно оценке величины дипольного момента, степень ионности связи в НС1 всего 17%, а в KF 83%. [c.537]

    Каким образом дипольный момент двухатомной молекулы позволяет оценить ионный характер связи Какова степень ионности связи в молекуле НР  [c.546]


    У какого из веществ сильнее выражен ионный характер связи, К1 или ВаО Чему равна степень ионности каждой из этих молекул в процентном выражении (Данные о дипольных моментах указанных молекул следует найти в справочниках.) [c.548]

    Степень ионности связи в sH больше, чем в LiH (x s = 0,79, Хи = = 0,98) sH должен иметь больший дипольный момент. [c.523]

    Дипольный момент молекулы непосредственно связан со степенью ее ионности, т. е. с величиной, характеризующей избыток электронного заряда на атоме В в молекуле А—В [218] [c.202]

    Полярность связи и концепция электроотрицательности. Степень полярности связи наиболее непосредственно характеризуется дипольным моментом, часто для этого используется также концепция электроотрицательности. Полинг назвал электроотрицательностью атома (ЭО) способность его в молекуле притягивать на себя электрон. Полярность молекулы определяется разностью электроотрицательностей атомов (ДЭО), чем она выше, тем полярнее связь, ЭО атома тем выше, чем выше его ПИ (способность удержать свой электрон) и чем выше СЭ (способность притягивать электрон соседнего атома). Поэтому мерой электроотрицательности может служить сумма ПИ и СЭ. Приняв за условную единицу ЭО атома Ь , получим шкалу ЭО атомов  [c.92]

    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]


    Степень ионности связи должна возрастать с увеличением разности электроотрицательностей, поэтому она увеличивается в ряду 1F < < BrF < IF. Наибольший дипольный момент должен быть у IF. [c.523]

    Экспериментальные измерения дают для дипольного момента моноксида углерода СО значение 0,112 Д. Какова степень ионности связи С—О (в процентном выражении)  [c.548]

    Предскажите последовательность увеличения степени ионности связи в молекулах 1F, BrF, IF. У какой из молекул, BrF или IF, больше дипольный момент  [c.549]

    Дипольный момент двухатомной молекулы КВг равен 10,41 Д, а молекулы КС1 10,27 Д. В какой из этих молекул связь имеет большую степень ионности  [c.537]

    Способностью адсорбироваться и удерживаться на металлической поверхности обладают и неполярные углеводороды, поляризация которых возникает под действием силового поля металлической поверхности. Обладая индуцированным дипольным моментом, их молекулы ведут себя подобно молекулам, имеющим постоянный дипольный момент. Степень поляризации, а следовательно, прочность адсорбированного слоя повышается в ряду парафиновые - нафтеновые - ароматические углеводороды [ 59 ]. [c.43]

    Сопоставляя данные, приведенные в табл. 4.3, с такими характеристиками металлов, как первый потенциал ионизации, работа выхода электрона, радиус иона, электроотрицательность, сродство к электронам и стандартный электронный потенциал в водных растворах, можно прогнозировать энергетические взаимодействия активных групп маслорастворимых ПАВ и металлов, а также ориентировочно оценивать дипольный момент и относительную степень ионности металлсодержащих маслорастворимых ПАВ. [c.202]

    Кроме того, на рис. А.43 нанесены рассчитанные из дипольных моментов степени ионности для некоторых соединений. Рассчитанные таким образом значения хорошо аппроксимируются кривой, построенной по вышеприведенному уравнению. [c.105]

    Как ВИДНО из сравнения величин дипольных моментов, степень поляризации (полярность) связи тем выше, чем больше электроотрицательность галогена Исключение составляют связи С-Р и С-С1, но это объясняется сильным увеличением длины связи при переходе от элемента второго периода к элементу третьего периода [c.434]

    Вследствие несимметричного расположения зарядов у донорно-акцепторных комплексов возникают большие дипольные моменты (4 ч- 6Z ) [91—94]. Эти комплексы при контакте с кислородом или водой снова разрушаются и переводятся в соединения с нулевым или очень малым дипольным моментом. Степень комплексообразования и величина возникающих при этом дипольных моментов зависит как от природы акцептора, так и донора. Поскольку диэлектрическая константа (ДК) раствора зависит от природы и числа содержащихся в нем полярных молекул, то можно, измерив ее у растворителя, определить концентрацию образовавшихся молекул и величину дипольного момента [92, 93]. [c.144]

    У какой молекулы, LiH или sH, больше степень ионности связи Какая из них должна иметь больший дипольный момент  [c.549]

    Классическая структура имидазола (2) не дает поэтому представления ни о размерах молекулы, ни о ее реакционной способности или физических свойствах представить это кольцо можно только мезомерной структурой (15) или набором резонансных формул схема (2). Определенно, ионные структуры здесь более важны, чем для бензола, однако несмотря на значительную поляризацию кольца имидазола (по данным измерения дипольного момента), степень ее недостаточна для стабилизации ионной структуры. Как отмечается в разд. 17.3.3, эти данные по диполь-ному моменту имидазола не однозначны в силу самоассоциации в некоторых растворителях. [c.432]

    Перераспределение воды в образце [699, 700] сказывается и на токах ТСД. Как видно из рис. 16.7, максимумы С и D смещаются с течением времени и примерно через 90 дней смещение прекращается (опыт проводили при наличии гелия в измерительной ячейке). Это явление можно объяснить перераспределением молекул воды между полостями в отдельных кристалликах цеолита, а также перераспределением воды между большими и малыми кристалликами. При этом отмечено некоторое возрастание поляризации процесса D (в 1,1 раза) и С (в 1,2 раза) (найдено из зависимости токов ТСД от времени). Это можно объяснить тем, что молекулы воды занимают в полостях положения, при которых их дипольные моменты в определенной степени компенсируют друг друга. При более равно- [c.262]

    По данным, приведенным в табл. 1.9, можио проследить, как меняется данное свойство в группе сходных веществ. Так, в ряде НС1, НВг и HI дипольные моменты уменьшаются. Снижение (х в этом ряду объясняется тем, что уменьшение различия в электроотрицательностях уменьшает степень полярности связи. [c.71]

    В растворе углеводородов соли тяжелых металлов находятся в недиссоциированной форме. В отсутствие полярных молекул молекулы солей ассоциируются в мицеллы [29]. Средний размер мицелл тем больше, чем выше концентрация соли в растворе. Например, степень ассоциации стеариновокислой меди в толуоле при комнатной температуре 6,4 при ее концентрации ОД г/кг раствора и 7,1 при концентрации 0,26 г/кг. Мицеллы образуются из-за диполь-дипольного притяжения частиц, и чем выше дипольный момент соли, тем выше степень ассоциации [29]. В результате образования полярных продуктов в окисляющемся углеводороде степень ассоциации молекул соли снижается, поскольку появляются комплексы типа соль — продукт. Вместе с тем эти продукты конкурируют с ROOH как лигандом в координационной сфере металла, поэтому при накоплении продуктов окисления скорость каталитического распада ROOH на радикалы снижается. [c.193]


    Степень полярности такой молекулы устанавливается измерением так называемого дипольного момента. Величина дипольного момента определяется произведением из суммы всех зарядов одного знака на расстояние между центрами тяжести зарядов, что может быть выражено формулой  [c.59]

    Одним из условий эффективности селективной очистки масляного сырья является не только четкость отделения парафино-нафтеновых углеводородов от ароматических и смол, но и избирательность растворителя по отношению к ароматическим углеводородам разной структуры. На основании данных [7—9] по избирательной способности к ароматической части сырья, включающей углеводороды разной степени цикличности, исследованные растворители располагаются в следующий убывающий ряд нитробензол >фурфурол> фенол. По отношению к группам компонентов фенол более избирателен, чем фурфурол, т. е. при экстракции фурфуролом парафино-нафтеновая часть менее четко отделяется от ароматической. Это объясняется тем, что избирательная способность растворителя к ароматическим углеводородам разной структуры обусловлена значением дипольного момента молекул растворителя (фурфурол имеет больший дипольный момент, чем фенол), в то время как избирательность к группам компонентов нефтяного сырья определяется КТР сырья в растворителе (для фенола эта температура ниже). [c.60]

    Наличие элементов кристаллической структуры наряду с большим дипольным моментом молекулы Н2О обусловливает очень большое значение относительной диэлектрической проницаемости воды е при 25 °С она равна 79,5." Таким образом, взаимодействие между заряженными частицами в водной среде приблизительно в 80 раз слабее, чем в вакууме. Благодаря этому все ионные соединения в водных растворах диссоциируют. В отличие от растворителей с меньшим значением е диссоциация в водной среде является практически полной. В водном растворе диссоциируют на ионы также многие соединения с полярной связью в молекулах, такие, как галогеноводороды, НгЗ и др., хотя для подобных соединений степень диссоциации может не равняться 100%. [c.156]

    Наряду с отмеченными эффектами при контакте полярного растворителя с ионитом наблюдается сольватация ионов, обусловленная электростатическим взаимодействием заряженных ионов с ди-польными молекулами растворителя. Чем меньше дипольный момент растворителя, тем меньше склонность ионита к сольватации. С уменьшением диэлектрической постоянной растворителя увеличивается электростатическое взаимодействие между противоположно заряженными ионами, что способствует образованию ионных пар и ассоциации, а также уменьшению осмотической активности ионов и разности осмотических давлений. Все эти факторы уменьшают степень набухания, но при этом силы отталкивания между фиксированными ионами возрастают до тех пор, пока не будут нейтрализованы в результате ассоциации с противоиона-ми [1]. [c.374]

    Электростатическая составляющая обусловлена возникновением доннановского потенциала, т. е. электрическими характеристиками раствора и ионита (заряды ионов, диэлектрическая проницаемость, дипольный момент растворителя), концентрацией раствора, степенью превращения (емкостью) ионита, сродством ионита и раствора и температурой. Подчеркнем, что среди прочих факторов температура также оказывает влияние на эффекты, вызывающие набухание, поэтому важно рассмотреть и учесть при моделировании тепловые процессы, возникающие при отмывке ионита. [c.375]

    В системе сорбент — сорбированная вода реактивное поле по мере увлажнения сорбента растет, что обусловливает увеличение дипольного момента комплекса даже в том случае, когда дополнительно сорбированные молекулы непосредственно не взаимодействуют с комплексом. При этом изменение е может происходить не только за счет роста е , но и за счет увеличения бос. В наибольшей мере это должно проявиться тогда, когда приращения Дея и Деоо в результате увлажнения материала отличаются незначительно. В этом случае увеличение е системы обусловлено протонной поляризацией в большей степени, чем ориентационной. Можно предположить, что при включении слабого электрического поля при измерении диэлектрических характеристик системы сорбент — сорбат происходит ориентация диполей, которая способствует переносу протона вдоль Н-связи. Последнее вызывает переход КВС из молекулярной в ионную форму. Вероятность такого перехода в системе сорбент — сорбат зависит от диэлектрической проницаемости среды, окружающей КВС она резко увеличивается при определенной для данной системы критической величине йо- [c.247]

    В общем случае следует отличать полярность молекулы в целом от полярности отдельных содержащихся в пей связей. Для двухатомных молекул эти два понятия совпадают. Анализируя имеющийся опытный материал, можно установить, что двухатомные молекулы, состоящие из одинаковых атомов в соответствии с вполне симметричным положением связывающей их электронной пары, не обладают полярностью, и для них [х = 0. Двухатомные молекулы, состоящие из неодинаковых атомов, в большинстве случаев являются в той илн иной степени полярными. В общем, чем больше различие в электроотрицательности элементов и чем, следовательно, более асимметричным является распределение электронной пары, связывающей данные атомы, тем больше будет и полярность связи. Наибольшей величины, при прочих равных условиях, она должна достигать при чисто ионной связи. Впрочем, строго говоря, между асимметрией в распределении электронной пары и дипольным моментом однозначной зависимости может и не быть, так как асимметрия эта определяет собой только величину заряда атомов в данной молекуле, а дипольный момент зависит еще и от расстояния между ними. [c.78]

    Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры, так как ориентация наведенного диполя не может быть произвольной, она определяется направлением постоянного диполя. Энергия / дд тем значительнее, чем выше поляризуемость неполярной молекулы и дипольный момент полярной молекулы. Индукционное взаимодействие наблюдается при образовании гидратов благородных газов, при растворении полярных веществ в неполярных жидкостях и существенно только для молекул со значительной поляризуемостью. К ним в первую очередь относятся молекулы с сопряженными связями. [c.133]

    Взаимодействие постоянных диполей, которые имеют большое значение в молекулах с большим дипольным моментом. Энергия взаимодействия двух диполей прямо пропорциональна произведению их дипольных моментов и обратно пропорциональна третьей степени расстояния между ними. Эта энергия ориентационного взаимодействия падает с повышением температуры. [c.157]

    Ионный характер (степень ионности) связи в двухатомной молекуле (в процентах) может быть оценен по отношению экспериментально наблю-даем ого дипольного момента (щ сп) к рассчитанному дипольному моменту (йрассч)> соответствующему идеально ионной структуре  [c.545]

    Органические соединения класса пиридинов широко используются в качестве ингибиторов коррозии в сероводородсодержащих минерализованных коррозионных средах. В последнее время находят широкое применение их четвертичные соли, такие как хлористые аминопиридины. Однако не все соединения проявляют достаточную эффектив1юсть в одних и тех же условиях. Для установления зависимости степени заш иты стали индивидуальными соединениями от квантово-химических параметров последних были проведены расчеты методом пренебрежения двухатомным перекрыванием с помощью программы АМРАС таких параметров как дипольный момент молекул, энергии на верхних заполненных молекулярных орбиталях (ВЗМО) и на нижних свободных молекулярных орбиталях (НСМО), максимальный и минимальный заряды на атомах. [c.289]

    С другой стороны, химический состав среды и ее полярность определяют, будут ли и в какой степени растворяться в ней конкретные ПАВ, что зависит от ван-дер-ваальсовой составляющей энергии связи этого ПАВ со средой. Чем эта энергия связи выше и чем растворимость ПАВ лучше, тем хуже его поверхностные (в частности, защитные и противокоррозионные) свойства. Молекулы среды способны вступать в межмолекулярное взаимодействие с молекулами ПАВ с образованием Н-ком-плексов, я-комплексов и комплексов с переносом заряда. Тем самым молекулы ПАВ поляризуются, увеличивается их дипольный момент и относительная степень ионности. Все это приводит к возрастанию общего энергетического взаимодействия. [c.207]

    Исследования показывают, что макрофизические свойства вещества (например, поверхностное натяжение, вязкость, теплопроводность) только косвенно зависят от структуры молекулы (лишь в той степени, в какой структура влияет на массу, объем, форму, поляризуемость и дипольный момент молекулы). Непосредственное влияние на макрофизические свойства вещества оказывают перечисленные свойства молекулы, а поскольку некоторые из них являются аддитивными величинами, то, следовательно, можно сделать вывод о возможности косвенного аддитивного определения макрофизических свойств вещества. Примеры таких расчетов будут приведены ниже. [c.76]

    Ароматические углеводороды масляных фракций растворяются как в парафино-нафтеновых углеводородах, так и в полярном растворителе, за счет действия однотипных дисперсионных сил. В последнем случае при контакте с неполярной частью молекул растворителя ароматические углеводороды растворяются в нем вследствие дисперсионного притяжения при соприкосновении с функциональной группой в молекулах этих углеводородов индуцируется дипольный момент и растворение происходит в результате ориентации диполей. Следовательно, преимущественное растворение ароматических углеводородов в шолярном растворителе объясняется большей энергией притяжения диполей по сравнению с энергией взаимодействия неполярных соединений и, кроме того, наличием дисперсионных сил между неполярной частью молекул распворителя и молекулами этих углеводородов. В связи с вышеизложенным растворимость ароматических углеводородов в полярных растворителях при прочих равных условиях уменьшается по мере увеличения длины боковых цепей и усложнения их структуры (рис. 6), так как при этом затрудняются индуцирование в их молекулах дипольного момента и ассоциация с молекулами растворителя [5]. В этом случае растворение является в основном следствием дисперсионного взаимодействия молекул. Повышение степени цикличности ароматических углеводородов приводит к увеличению их растворимости в результате большей поляризуемости таких м олекул, и энергия притяжения диполей превышает энергию дисперсионного цритяжения молекул. [c.49]

    АЕ равнялось бы 0. Энергия несим метрнчиой связп, вычисленная по уравнению (1.58)., всегда меньше найденной из опыта. Это объясняется тем, что ковалентная связь между различными атомами всегд-а в гой или иной степени полярна. По степени оТ клонения величины АЕ от нуля можио судить о степени полярности ковалентной связи и тем самым о способности атомов притягивать к себе электроны (характеры изменения АЕ и дипольного момента одинаковы, а последний возрастает с увеличением степени полярности связи). [c.116]

    Несмотря на поляризацию, любой элемент объема капельки, содержащий достаточно большое число молекул, остается нейтральным, что обусловлено взаимной компенсацией противоположных по знаку зарядов диполей, расположенных один возле другого. Иначе обстоит дело в тонких слоях у поверхности капельки. Эта часть поверхности, в которую входят силовые линии внеишего поля, имеет избыток отрицательных зарядов - отрицательно заряженных концов молекул - диполей. У противоположной поверхности, из которой выходят силовые линии, возникает избыточный положительный заряд. Эти поляризационные заряды, связанные с поверхностью капельки, только в незначительной степени нейтрализуются противоположными зарядами молекул внешней, нефтяной среды, примыкающих к цоверхности капельки, так как их дипольный момент ничтожен по сравнению с дипольным моментом молекул воды. [c.48]

    Эта формула легко объясняется, если учесть, что сила притяжения, обусловливаемая диполь-дипольньш взаимодействием (при расстоянии между каплями гораздо большем чем их размеры), обратно пропорщю-нальна четвертой степени этого расстояния и прямо пропорциональна произведению дипольных моментов обеих капель, каждый из которых в свою очередь пропорционален объему капли и напряженности внешнего поля [42]. [c.53]

    Значение дипольного момента связи дает ценную информацию о поведении молекул. Как правило, чем больше дипольный момент, (т. е. степень ионности связи), тем выше реакционная способность молекул. Для оценки степени ионности связи используют такую характеристику, как электроотрицателъность (ЭО). Электроотрица- [c.32]


Смотреть страницы где упоминается термин Дипольный момент степень: [c.62]    [c.151]    [c.151]    [c.215]    [c.60]    [c.536]    [c.93]    [c.60]    [c.30]    [c.213]   
Неорганическая химия (1981) -- [ c.219 , c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Дипольный момент оценки степени и характера сопряжения

Дипольный момент, применение для оценки степени и характера сопряжения



© 2025 chem21.info Реклама на сайте