Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классический метод радиоактивных изотопов

    КЛАССИЧЕСКИЙ МЕТОД РАДИОАКТИВНЫХ ИЗОТОПОВ [c.371]

    Метод изотопного разбавления — другой важный аналитический метод, основанный на использовании явления радиоактивности. Например, если соединение невозможно выделить в чистом виде, то его нельзя количественно определить классическими методами анализа. Если же в анализируемую смесь ввести следовое количество радиоактивного изотопа определяемого компонента и тщательно смешать, то даже при неполном отделении определяемого компонента можно определить его содержание в анализируемой пробе. Обозначим количество определяемого компонента в граммах в анализируемой пробе через а дополнительно введенное в пробу количество этого вещества в радиоактивной форме через w (его активность обозначим как А). После тщательного смешивания выделяют д грамм чистого компонента или соединения этого компонента, имеющего активность В. Необходимые расчеты можно провести по уравнениям [c.390]


    Классические методы количественного анализа разрабатываются большей частью на модельных образцах нерадиоактивных веществ с целью конечного выделения отдельных компонентов смеси. При более глубоком рассмотрении оказывается, что во многих случаях кажущиеся правильными результаты анализа достигаются компенсацией ошибок определения, а не за счет количественного разделения компонентов смеси. Так, при проверке разделения калия и натрия в виде хлороплатината и перхлората применение радиоактивного изотопа Na дает возможность обнаружить, что в этих осадках соединений калия содержится примерно 3% соли натрия ( Ыа) 116]. Применение радиоактивных индикаторов позволяет определить потери анализируемого вещества в ходе анализа, например при выпаривании, промывании, неконтролируемой адсорбции материалом аппаратуры или при соосаждении. Аналитик может использовать вещества, содержащие радиоактивные индикаторы, для контроля точности и чистоты проведения анализа. [c.315]

    Применение радиоизотопной индикации позволило весьма обстоятельно исследовать часто встречающееся в аналитической практике явление соосаждения. Тут уместно вспомнить, что изучение соосаждения относится к одному из центральных разделов классической радиохимии. Именно на применении этого явления основан ряд методов разделения, выделения и концентрирования радиоактивных изотопов многих элементов. [c.162]

    Присутствие в органическом соединении небольших количеств радиоактивных побочных продуктов или продуктов распада невозможно установить ни при помощи классических критериев степени химической чистоты [ЮЗ], ни в результате использования обычных химических и физических тестов. Хотя радиоактивные загрязнения составляют небольшую часть общего количества вещества, однако они могут составлять значительную долю общей радиоактивности. Наиболее подходящим способом определения изотопной чистоты соединения является разделение исследуемого препарата при помощи какого-либо хроматографического метода на химически чистые фракции с последующим определением содержания в них радиоактивных изотопов. Наиболее удобным способом является, вообще говоря, бумажная хроматография в сочетании с радиоавтографией [104—107]. Если на рентгеновской пленке обнаруживается только одно пятно, то это указывает на высокую степень изотопной чистоты исследуемого образца. Очевидные преимущества этого метода состоят в чувствительности и экономии вещества, а также в возможности оценки самопроизвольного распада путем сравнения радиоавтографов, полученных в разное время [108—ПО]. [c.30]


    Использование радиоактивных изотопов в аналитической химии позволило создать принципиально новые методы качественного и количественного анализа, проверить и существенно улучшить многие классические методы, сократить время выполнения анализа. [c.201]

    Щелочное сплавление. Многократное выщелачивание дает удовлетворительные результаты при радиохимическом анализе не только на стронций, но и на другие радиоактивные изотопы. Классический метод сплавления навески почвы с карбонатами и щелочами более трудоемок, но имеет преимущества, позволяя еще в процессе предварительной обработки отделить радиоактивные изотопы Сз и Ru. [c.583]

    Методы, основанные на применении радиоактивности. Аналитикам хорошо известно, насколько трудно получить достаточно точные и хорошо воспроизводимые результаты определения ниобия и тантала в различных природных и искусственных объектах. Классические методы Шеллер а,основанные на применении таннина, виннокислого гидролиза или других неорганических или органических осадителей, дают ошибки более 20%. Большие расхождения в результатах определений наблюдаются и при применении колориметрических методов. При определении тысячных долей процента этих элементов данные анализа расходятся в 5—10 раз. Применение радиоактивных изотопов ниобия и тантала дало возможность производить оценку точности методов и установить, как происходит распределение этих элементов в процессе разделения и отделения от других элементов [105]. Таким образом был проведен танниновый метод Шеллера [33]. [c.492]

    Усовершенствование этих методов стало возможным лишь благодаря развитию масс-спектрометрии. Как следует из табл. 1 и фиг. 5,6, торий, уран и его изотоп актиний распадаются до свинца. Различить изотопы свинца с помощью классического химического анализа невозможно, поэтому раньше нельзя было установить, какая часть свинца, найденного в урановой руде, образовалась в результате распада урана или тория, а какая не имеет отношения к радиоактивному распаду. Иными словами, задача состоит в том, чтобы узнать, сколько обычного, нерадиогенного свинца в урановой руде. [c.62]

    С другой стороны, тесные контакты коллоидной химии со смежными дисциплинами способствовали обогащению ее экспериментальной базы. Наряду с такими классическими методами эксперимента, родившимися именно в коллоидной химии, как определение поверхностного натяжения и двухмерного давления, ультрамикроскопия, центрифугирование, диализ и ультрафильтрацня, наблюдение разнообразных электрокинетичеоких явлений в дисперсных системах, дисперсионный анализ и порометрия, многочисленные прецизионные адсорбционные методы, изучение рассеяния света (опалесценции) и т. п., в разных разделах коллоидной химии нашли эффективное применение всевозможные спектральные методы ЯМР, ЭПР, УФ- и ИК-спектроскопия, гашение люминесценции, многократно нарушенное полное внутреннее отражение, эллипсометрия (с широким использованием лазерной техники), малоугловое рассеяние рентгеновских лучей и другие рентгеновские методы, радиоактивные изотопы, все виды электронной микроскопии. Большие перспективы открывает привлечение современных физических методов исследования поверхностей с использованием медленных электронов, масс-спектроскопии вторичных ионов и т. п. [c.9]

    Тесные контакты коллондной химш со смежными дисциплинами способствовали обогащению ее экспериментальной базы. Наряду с классическими методами эксперимента, родившимися именно в коллоидной химии (определение поверхностного натяжения, ультрамикроскопия, диализ и ультрафильтрация, дисперсионный анализ и порометрия, изучение рассеяния света и т. п.), в разных разделах коллоидной химии эффективно используют всевозможные спектральные методы (ЯМР, ЭПР, УФ- и ИК-спектроскопия, гашение люминесценции, многократно нарушенное полное внутреннее отражение, эллипсометрия), рентгеновские метода, радиоактивные изотопы, [c.5]

    При изучении многостадийных процессов в сочетании с электрохимическими измерениями широко применяется метод радиоактивных индикаторов. В. В. Лосев и сотр. использовали этот метод для детального изучения реакций разряда — ионизации металлов на амальгамах, которые являются классическим примером многостадийных электродных процессов. На рис. 176 показаны поляризационные кривые, измеренные на амальгаме индия в растворе 1п( 104)3 с избытком N300 . Анодная поляризационная кривая была получена электрохимическим и радиохимическим методами. В последнем методе использовалась амальгама, содержащая радиоактивный изотоп индия, и скорость анодного растворения индия при постоянном потенциале определялась отбором проб раствора и измерением их радиоактивности. Радиохимический метод позволил получить истинную скорость анодного процесса не только при равновесном потенциале (т. е. непосредственно [c.337]


    Кроме классических методов определения молекулярных весов по концевым группам, применяются и иные способы, которые еще пока не нашли широкого распространения, но показывают высокую эффективность. Это в основном применение разных типов меченых атомов, которые тем или иным способом могут быть связаны с концевыми группами макромолекул, а затем определены путем химического анализа, физическими методами или по радиоактивности, если применены активные изотопы. Так, например, Керн и Каммерер [50] проводили полимеризацию метакрилнитрила, метилметакрилата и винилацетата в присутствии перекиси и-бромбензоила, а полимеризацию винилхлорида— в присутствии перекиси Л1-нитробензоила. Из данных химического анализа они установили, что при мягких условиях полимеризации соответствующие бензоильные радикалы входят в макромолекулу. К сожалению, авторы не проводили определения среднечислового молекуляр- юго веса другими абсолютными методами, поэтому не имеется возможности оценить ошибки метода применительно к данным объектам. [c.277]

    Классические методы аналитической химии в большинстве случаев оказываются малопригодными для решения такого рода задач. Незаменимым в этом отношении является радиоактива-циоиный анализ, основанный на образовании в анализируемом образце искусственных радиоактивных изотопов. В настоящее вре-ИЯ он является основным методом определения примесей как в простых веществах, так и в соединениях [228—235]. [c.124]

    Основные научные работы посвящены изучению механизма фотосинтеза. Показал (1941), что первичный процесс фотосинтеза заключается в фотолизе молекулы воды, в результате чего образуются кислород, выделяющийся в атмосферу, и водород, идущий на восстановление двуокиси углерода. Используя радиоактивный изотоп углерод-14 в качестве метки и метод хроматографии на бумаге, установил последовательность фо-тосинтетического цикла (цикла Кэлвина) ассимиляция двуокиси углерода зеленььми растениями — превращение его в органические вещества — последующее восстановление. Создал (1956) схему полного пути углерода при фотосинтезе, ставшую классической. Предложил модель превращения световой энергии в химическую. Показал, что превращения фосфата пентозы играют большую роль в жизнедеятельности не только растений, но и животных. Изучал вопрос о происхождении и развитии жизни на Земле. [c.279]

    Радиоактивные изотопы нашли широкое применение в аналити-чеекой химии как для количественного анализа, так и для контроля методов анализа и чистоты разделения компонентов смеси. Классическим примером является контроль разделения и определения платины, иридия и золота. Сначала эти металлы осаждаются из раствора формиатом натрия, затем осадок прокаливают и остаток растворяют в царской водке. При этом золото и платина переходят в раствор, а иридий остается в остатке. После нейтрализации раствора золото осаждают перекисью водорода, а из фильтрата формиатом натрия выделяют платину. В присутствии радиоактивного изотопа Au было показано, что золото оказывается в иридиевой и платиновой фракции. [c.522]

    Соосаждение. Значительное распространение в радиохимии имеет метод выделения радиоактивного изотопа осаждением с носителем, введенный в радиохимию еще первыми работами П. и М. Кюри. Соосаждение со стабильным изотопом очень часто применяется в тех случаях, когда требуется препарат не для ядернофизических исследований. Закономерности процесса соосаждения с образованием смещанных кристаллов подробно изучены в классических исследованиях Хлопина с сотрудниками [13]. Для получения препаратов без носителя соосаждение с элементом-аналогом не может иметь значительного применения вследствие трудностей последующего отделения радиоактивного изотопа от носителя. Правда, здесь возможно хроматографическое разделение, но не следует забывать, что разделение сходных элементов методом хроматографии является довольно продолжительной операцией. [c.160]

    Оба радиоактивных изотопа обладают чрезвычайно мягким р-излучением (Ямако трития = 0,0185 Мэв макс—углерода-14 = 0,156 Мэв), которое может поглощаться уже очень тонкими слоями (толщина полуослаб-ления ( 1/2 трития < 0,2 мг/см , толщина полуослабления углерода-14 = = 2,7 мг/см у, поэтому работа с ними связана с известными трудностями. Для преодоления последних разработаны различные методы измерения, которые (особенно для трития) требуют затраты значительного времени и труда. В то время как измерения с веществами, меченными углеродом-14, можно проводить с торцовым счетчиком, для трития этот метод неприменим. При определениях активности малоактивных соединений, меченных тритием или углеродом-14, необходимо исключать поглощение излучения, вызванное слоем воздуха между образцом и окошком счетчика, а также и самим окошком. В этом случае активности твердых или малолетучих жидких проб можно измерять в 2я- или 4я-проточных счетчиках, поэтому из всех адсорбционных эффектов приходится считаться только с самопоглощением. Непременным условием воспроизводимости результатов является одинаковая толщина слоя и поверхность препарата. Для измерения твердых и жидких соединений используются также сцинтилляционные счетчики. При этом выход по счету значительно выше, чем в 2л-счетчике в сцинтилляционных счетчиках исследуемый материал находится в растворенном или суспендированном состоянии и самопоглощение отсутствует. Несмотря на наличие в настоящее время большого числа сцинтилляционных систем, состоящих из сцинтиллятора, растворителя для меченого вещества и (в случае необходимости) преобразователя длин волн, этот метод остается в значительной мере специфичным, зависящим от природы вещества [3]. Идеальным является такой метод, который позволяет измерять любые воспроизводимые образцы, независимо от вида меченого соединения. Подобным методом является измерение газа (например, СО5) в ионизационной камере [4—6] счетчиком Гейгера—Мюллера и пропорциональным счетчиком [7, 8]. Перевод вещества в СОз можно провести методами классического элементарного анализа или сжиганием по Ван Слайку [9, 10]. [c.426]

    Точность методов анализа, основанных на использовании радиоактивных изотопов, как правило, составляет 2—5%. Напомним, что примерно такова же точность других аппаратурных методов анализа (спектрофотометрия, спектроскопия и т. д.), в то время как точность классических методов анализа (гравиметрия, волюмомет-рия) достигает десятых долей процента и менее. [c.202]

    Разработкой методов анализа с использованием радиоактивных реагентов первым начал заниматься (1925 г.) Р. Эренберг [665], однако практическую ценность подобные методы приобрели лишь в 40-х годах, после того как стали доступны радиоактивные изотопы. С тех пор их пытаются использовать во многих классических методах анализа. Так, А. Лапгер [666] разработал осадительное титрование с применением меченого радиоактивным изотопом исследуемого раствора либо титранта. Конечная точка при таком титровании определяется по изменению радиоактивности раствора. [c.239]

    Для анализа путей метаболизма можно также использовать метод конкуренции изотопов. Этот метод основан на том, что при мечении всех компонентов, участвующих в определенном пути метаболизма, добавление немеченого компонента вызывает пропорциональное снижение удельной радиоактивности всех метаболитов начиная с добавленного. Робертс и др. [38] широко и успешно применили этот метод в своих классических исследованиях биосинтеза аминокислот у Е. oli. [c.427]

    Одним из необходимых условий проведения любого кинетического исследования является наличие удобного метода измерения скорости образования продуктов или скорости расходования субстратов. Для проведения подобных измерений используются самые разные методы, начиная с таких классических методов, как манометрический, вискозиметрический и поляриметрический, и кончая самыми современными — ЯМР и ЭПР. Однако наиболее широко применяются спектрофотометрия, спектрофлуориметрия, автоматическое титрование, а также методы с использованием субстратов, меченных радиоактивными изотопами. В этой главе мы не будем рассматривать всех имеющихся методов, а остановимся только на самых распространенных, да и то ограничимся лишь областью их применения и практической стороной вопроса. [c.191]


Смотреть страницы где упоминается термин Классический метод радиоактивных изотопов: [c.277]    [c.278]    [c.268]   
Смотреть главы в:

Диффузия по границам зерен и фаз -> Классический метод радиоактивных изотопов




ПОИСК





Смотрите так же термины и статьи:

Изотопы радиоактивные

Классические



© 2025 chem21.info Реклама на сайте