Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностная энергия и молекулярные силы

    Поверхность раздела между двумя жидкостями обычно обладает положительной свободной энергией. Межфазное поверхностное натяжение на границе раздела двух жидкостей также положительно. Условием полной смешиваемости жидкостей является выполнение требования, чтобы межфазное натяжение было отрицательным или равным нулю. В таком случае молекулярные силы не будут препятствовать смешению жидкостей, так как каждая из них притягивает молекулы другой с такой же или с большей силой, чем сила, с которой каждая жидкость притягивает свои собственные поверхностные молекулы. В этом случае молекулы свободно перемещаются из одной жидкости в другую. На поверхности раздела жидкость — жидкость молекулы ориентируются таким образом, чтобы энергия их взаимодействия была максимальной [210]. [c.192]


    Здесь Фп — молекулярное давление Kj., равное плотности сгущения свободной энергии на единицу объема поверхностного слоя или нескомпенсированной равнодействующей молекулярных сил на единицу площади поверхностного слоя  [c.26]

    Таким образом, с точки зрения молекулярной теории положительная свободная поверхностная энергия (т. е. поверхностное натяжение) обусловлена силами притяжения между молекулами, находящимися внутри жидкости и на ее поверхности. Величина поверхностного натяжения определяется межмолеку-лярными силами, геометрией молекул жидкости и числом атомов в них. Кроме того, на нее влияют свободная энергия меж-молекулярных сил, ориентация молекул в поверхностном слое, определяющая направление силовых полей, а при контакте двух жидкостей — еще и присутствие молекул одной жидкости во второй и химическое взаимодействие молекул обеих граничащих жидкостей [211]. [c.186]

    Приближаясь при тепловом движении на расстояние действия молекулярных сил, дисперсные частицы агрегируются и образуют более крупные конгломераты. Если при агрегации удельная поверхность частиц существенно уменьшается, противодействие поверхностной энергии частиц силе тяжести также уменьшается, и при достижении агрегатами размеров, превы- [c.65]

    Зародыш Надмолекулярное образование в любом агрегатном состоянии, способное к самостоятельному существованию и характеризующееся бесконечно малыми значениями поверхностной энергии и толщины граничного слоя, прилегающего к поверхности раздела фаз, лавинообразно изменяющихся в зависимости от параметров. Склонны к молекулярному притяжению, электрическому отталкиванию, а также взаимодействию за счет структурных сил гидрофобного притяжения  [c.54]

    Изменение поля молекулярных сил, происходящее в неоднородном поверхностном слое между объемными фазами I и И, приводит к отличию величин энергии, энтропии и чисел молей компонентов этого слоя (в объемах и з-") от соответствующих величин внутри соседних фаз I (в объеме, равном з- ) и И (в объеме, равном 5-")- Поэтому удобно говорить не о всей внутренней энергии или энтропии поверхностного слоя и не о всем количестве каждого компонента I в этом слое, но лишь об избытках энергии, энтропии и чисел молей компонентов I в объеме поверхностного слоя над соответствующими величинами энергии, энтропии и чисел молей компонентов I в соответствующих объемах внутри фаз I и П, т. е. в объеме, равном х з в фазе I, и в объеме, равном - "5 в фазе П. Именно эти избытки энергии, энтропии и чисел молей компонентов характеризуют отличие поверхностного слоя от объемных фаз. Эти избытки могут быть как положительными, так и отрицательными. Например, компонент 1 может находиться преимущественно у поверхности раздела 5 (положительный избыток), а компонент 2 может находиться в объеме поверхностного слоя в меньшем количестве, чем в равном объеме фаз 1 или И (отрицательный избыток). [c.462]


    При системном анализе процессы измельчения- смешения сыпучих материалов [4] определяются как процессы взаимодействия ансамбля измельчаемых и смешиваемых частиц различного сорта и различных размеров с несущей средой и между собой при наличии внешних воздействий на двух уровнях иерархии. На локальном (микро) уровне действуют внешние поверхностные и массовые силы и силы взаимодействия между несущей фазой и частицами (силы Архимеда, Стокса, Жуковского и Магнуса). При определенных свойствах обрабатываемых веществ и несущей среды возможны дополнительные электромагнитные силы. В результате этого в системе происходит перенос массы, импульса, энергии и заряда. Внешняя механическая энергия или энергия другого вида, превращенная в нее внутри системы, расходуется на работу против сил молекулярного сцепления и электростатического взаимодействия, преодоление сил взаимодействия внутри частицы, на накопление упругих деформаций, переходящих в пластические и во внутреннюю энергию. Частично энергия упругих деформаций создает в системе дефекты, микронапряжения и микротрещины. [c.113]

    Процессы адгезии играют значительную роль в технологии получения текстильных и композиционных материалов, клеев, строительных материалов и т.д. Существующие термодинамические теории адгезии основаны на результатах исследований энергии межфазного поверхностного натяжения, краевых углов на границе субстрат - адгезив , а также смачивания и растекания адгезива на межфазных границах с учетом вязкости и различного вклада межмолекулярных сил [2, 6, 7]. При этом недостаточно учитывается структура поверхностного слоя молекулярных растворов полимеров и их отклонения от идеальных. [c.11]

    Диспергирование жидкости приводит к образованию новой поверхности раздела. При этом часть молекул из объема переходит в поверхностный слой. Значит, при диспергировании производится работа, направленная против действия молекулярных сил. В результате возникает свободная поверхностная энергия [c.5]

    Выше была рассмотрена группа коллоидных систем, объединенных под общим названием лиофобных (гидрофобных) коллоидов, которые обладают сильно развитой физической поверхностью раздела и большим избытком свободной поверхностной энергии. Благодаря этому образуются ионные и молекулярные адсорбционные слои, которые и сообщают агрегативную устойчивость коллоидным частицам, тогда как стремление свободной поверхностной энергии лиофобных (гидрофобных) коллоидов к самопроизвольному уменьшению в силу второго начала термодинамики делает их термодинамически неустойчивыми. Весьма характерным свойством этих коллоидных систем является, как известно, слабое взаимодействие между веществами дисперсной фазы и молекулами дисперсионной среды. [c.326]

    Рассмотрим причины возникновения поверхностной энергии у твердого вещества. Состояние молекул в твердом веществе неодинаково и зависит от их расположения в частице. На рис. 37 пунктиром условно показаны границы сфер молекулярного действия. Молекулы, расположенные внутри частицы, не имеют свободного силового поля, так как межмолекулярные силы здесь полностью компенсированы. Молекулы, расположенные на поверхности частицы, имеют избыточное силовое поле, так как межмолекулярные силы у них компенсируются частично (заштрихованная часть). Длина стре лок условно указывает на относительную величину свободной поверхностной энергии Б данной точке. Из рис. 37 видно, что молекулы, расположенные на ликах неровной поверхности твердого вещества, обладают наибольшим избытком свободной поверхностной энергии. [c.92]

    КОАЛЕСЦЕНЦИЯ — слияние (укрупнение) капель жидкости в газовой среде (туманы) или в другой жидкости (эмульсии), или пузырьков газа (пар) в жидкости под влиянием молекулярных сил, проявляющихся в поверхностной энергии. К.— самопроизвольный процесс, сопровождающийся при постоянной температуре понижением свободной поверхностной энергии на величину, пропорциональную уменьшению поверхности. Выпадение дождей связано с К- мельчайших капелек воды в более крупные, быстро падающие под влиянием силы тяжести. Практическое значение К. очень велико прежде всего для расслоения эмульсий, например, при обезвоживании нефти, что достигается разрушением стабилизирующей пленки эмульгатора на поверхности капель нефти. [c.129]

    При диспергировании, связанном с образованием новой поверхности, часть молекул переходит из объема в поверхностный слой, а следовательно, производится работа, направленная против молекулярных сил. Такая работа, производимая над системой, приводит к сгущению свободной энергии в межфазном поверхностном слое, иначе говоря, к появлению свободной поверхностной энергии Я ).  [c.86]


    Процесс адсорбции идет в сторону уменьшения свободной энергии поверхности о. Этот процесс, обусловленный молекулярными силами, создает градиент концентрации у поверхности и в предельном случае приводит к заполнению поверхностного слоя тем компонентом, который обладает наименьшим значением а. Наоборот, тепловое движение молекул стремится восстановить равенство концентраций в объеме и в поверхностном слое. Равновесие устанавливается тогда, когда процесс адсорбции, приводящий к увеличению концентрации, компенсируется процессом диффузии из поверхностного слоя вглубь раствора. Это состояние равновесия, отвечающее минимуму свободной энергии всей системы, описывается уравнением адсорбции Гиббса, являющимся следствием второго начала термодинамики. [c.88]

    Обычная трактовка эффекта адсорбционного понижения прочности является энергетической. Эффект характеризуется снижением работы образования новых поверхностей твердого тела в процессе деформации и разрушения под влиянием возникновения на них адсорбционного слоя. Однако, очевидно, что возможна и силовая трактовка этих дефектов проникновение адсорбционного слоя по поверхностям развивающегося дефекта (микротрещины) связано с возникновением раздвигающего усилия, пропорционально двухмерному давлению, т. е. понижению поверхностной энергии вдоль границы слоя (стерического препятствия). После разгрузки (снятия напряженного состояния) адсорбционный слой, попавший в микротрещину, развивающуюся под напряжением, вновь вытесняется из нее под влиянием молекулярных сил сцепления, которые действуют в тупиковой области по линейной границе трещины. Именно клиновидный характер сечения трещины в ее тупиковой части неразрывно связан с возможностью обратного смыкания трещины после разгрузки. Трещины же в представлении Гриффитса имеют эллиптическое сечение с поверхностной энергией постоянной вдоль всего контура, кривизна которого повсюду конечна и сохраняет постоянный знак. [c.219]

    Как и все поверхностные явления, адсорбция есть результат сил молекулярного взаимодействия. Некомпенсированные молекулярные силы на поверхности адсорбента притягивают из объема газа или раствора молекулы адсорбата, при этом происходит уменьшение энергии Гиббса. Таким образом, адсорбция — самопроизвольный процесс, идущий с уменьшением поверхностного натяжения на границе раздела фаз и приводящий к тому, что поверхность адсорбента покрывается тонким адсорбционным слоем молекул адсорбата. При положительной адсорбции (или просто адсорбции) на поверхности твердого тела или жидкости происходит увеличе- [c.181]

    Таким образом, все дисперсные и коллоидные системы неравновесны или термодинамически неустойчивы в них протекают (с различными скоростями) процессы, приводящие к равновесию, отвечающему полному расслоению системы на две макрофазы. Стремление поверхностной энергии к минимуму за счет уменьшения поверхности раздела фаз заставляет капли жидкости, при отсутствии действия других сил, кроме молекулярных, принимать равновесную шарообразную форму, так как поверхность шара является минимальной для данного объема. [c.55]

    Коллоидные растворы обладают большим запасом свободной энергии, а поэтому термодинамически неустойчивы. Огромная удельная поверхность дисперсной фазы создает избыток поверхностной энергии, которая, согласно второму закону термодинамики, стремится к наименьшему значению, что связано с уменьшением поверхности раздела между частицами и средой. Это вызывает переход системы в такое состояние, когда частицы объединяются, сцепляясь под действием молекулярных сил в агрегаты. В одних коллоидах объединение идет довольно быстро, в других сравнительно медленно. [c.111]

    Другим основным фактором устойчивости неорганических гидрозолей является потенциал поверхности, удерживающий вокруг коллоидных частиц диффузный слой ионов. Ионы этого слоя гидратированы и создают вокруг частиц гидратные оболочки, которые заслоняют (экранируют) частицы от действия молекулярных сил сцепления и стабилизуют коллоидную систему. Если она не гидрозоль, а органозоль, ее стабилизация осуществляется главным образом за счет оболочек дисперсионной среды (сольватных оболочек,) удерживаемых вокруг частиц адсорбционными силами. Однако наличие одних только сольватных оболочек из молекул среды еще недостаточно для придания гетерогенной системе значительной агрегативной устойчивости. Необходим третий компонент — стабилизатор в виде электролита (полиэлектролита). Его роль заключается, во-первых, в понижении общей поверхностной энергии системы за счет адсорбции ионов и, во-вторых, в создании защитных ионно-сольватных слоев в составе каждой мицеллы (см. гл. V). [c.130]

    Выступы на шероховатой поверхности, ребра, углы и вершины многогранников несут атомы с меньшим числом соседей, обладающие большим числом ненасыщенных химических связей, большей локальной поверхностной энергией. Это — центры хемосорбции наоборот, действие межмолекулярных сил (не образующих химической связи) возрастает с увеличением молекулярного окружения, и центры физической адсорбции располагаются в основном во впадинах, трещинах, зазорах. [c.126]

    Во многих химико-технологических процессах мало измельчить материал как правило, нужно еще значительное время препятствовать молекулярным силам, стремящимся (в ходе самопроизвольного уменьшения избытка свободной энергии системы) привести к агрегированию частиц — их коагуляции и коалесценции. Иными словами, требуется осуществлять интенсивные процессы дезагрегации, перемешивания, г о м. о г е, н я 3 а ц и (И, в кражах и лаках, хлебопекарном деле, в керамической промышленности, при приготовлении катализаторных масс, при создании твердых топлив и т. д. Это достигается управлением процессами сцепления частиц при оптимальном сочетании механических (в том числе вибрационных) и физико-химических воздействий, т. е. привлечением поверхностно-активных сред и веществ. [c.8]

    Весьма своеобразны закономерности процессов агрегирования в системах, содержащих одновременно взвеси разных веществ. В этом случае наряду с рассмотренными выше процессами коагуляции однородных частиц может наблюдаться гетерокоагуляция — сцепление частиц разной природы. При этом иногда происходит обмен ролями между молекулярной и электростатической составляющими расклинивающего давления. Действительно (как отмечалось в 2 гл. IX), для несимметричных пленок (в данном случае — прослоек жидкости, разделяющих разнородные частицы) молекулярная составляющая расклинивающего давления может иметь положительный знак (А < 0) прослойка среды втягивается молекулярными силами в зазор между частицами. Это явление имеет ту же природу, что и упомянутое в 2 гл. I, возникновение нулевого двугранного угла при контакте жидкой фазы с границей зерен (в рассматриваемом случае — разделяющей разнородные материалы), когда поверхностные энергии фаз связаны условием Гиббса — Смита (III—29). [c.301]

    С энергетической точки зрения [уравнение (1.2)] существование поверхностной энергии легко объяснимо. Внутри жидкости равнодействующая сил, приложенных к каждой молекуле со стороны окружающих ее молекул, равна нулю. Перемещаясь внутри жидкости, молекулы не совершают работы. В поверхностном слое молекулы жидкости с более сильным молекулярным полем подвержены действию сил, направленных внутрь этой фазы. Поэтому молекулы, выходящие на поверхность раздела фаз, должны совершить работу против внутреннего давления, при этом кинетическая энергия при выходе молекул на поверхность не изменяется. [c.15]

    Механизм адсорбции подобен механизму абсорбции, поскольку в их основе лежат проявления одних и тех же молекулярных сил. На поверхности твердых веществ имеются несбалансированные силы, обусловленные неполным насыщением валентных связей поверхностных атомов. Вполне естественно поэгому, что такие поверхности взаимодействуют с прилегающи ми к ним фазами. Это взаимодействие может проявлять ся либо как физическая адсорбция, либо как хемосорбция Ненасыщенные валентные связи поверхностных атомов и на личие неровностей на поверхности обусловливают хемосорбцию Энергия хемосорбции обычно составляет 170—420 кДж на моль адсорбированного вещества, т. е. хемосорбированный слой довольно устойчив. [c.87]

    Первой стадией диспергирования является растягивание капли жидкости в цилиндрик, что сопровождается увеличеЕшем поверхности дисперсной фазы и происходит с затратой работы для преодоления молекулярных сил поверхностного натяжения. Вытянутая капля становится неустойчивой и распадается на мелкие частицы, приобретающие сферическую форму. Этот распад является второй стадией процесса, сопровождается уменьшением поверхности и свободной поверхностной энергии. Образующиеся при перемешивании цилиндрики жидкости начинают распадаться на капельки только тогда, когда их длина становится больше длины окружности сечения. В третьей стадии происходят одновременно процессы коалесценции при столкновении капель и диспергирования образовавшихся капель. Однако чем меньше становятся капельки, тем труднее происходит их вытягивание. Под действием увеличивающегося капиллярного давления более мелкие капли делаются все более жесткими, сопротивляющимися изменению формы. Установлено, что диспергирование происходит не только при растяжении капель, но и даже при небольшом сжатии. [c.15]

    Процессами разрушения дисперсных систем, приводящими к уменьшению свободной поверхностной энергии межфазных границ, служат изотермическая перегонка вещества от малых частиц к более крупным, коалесценция (слияние частиц) и коагуляция (агрегирование частиц при их слипании) При изотермической перегонке, связанной с повышенным значением химического потенциала вещества малых частиц по сравнению с более крупными (см. 3 гл. I), и при коалесценции уменьшение свободной поверхностной энергии обусловлено уменьшением площади поверхности раздела фаз, часто при неизменном значении удельной поверхностной энергии (поверхностного натяжения) а, т. е. A s = aA5<0. При коагуляции, особенно в тех случаях, когда между частицами сохраняются остаточные прослойки дисперсионной среды, площадь поверхности раздела фаз практически не изменяется или изменяется незначительно, и уменьшение величины s достигается в основном за счет частичного насыщения нескомпенсированных на поверхности частиц молекулярных сил. Это эквивалентно локальному (в зоне контакта) уменьшению межфазного натяжения а иначе говоря, для процесса коагуляции можно, несколько условно, записать А 5 = 5афДо<0, где 5аф соответствует той части поверхности раздела фаз в зоне соприкосновения частиц, на которой происходит частичная компенсация ненасыщенных молекулярных сил. При одинаковой исходной дисперсности коалесценция и изотермическая перегонка приводят, вообще говоря, к значительно более резкому уменьшению свободной поверхностной энергии системы, чем коагуляция. [c.240]

    Это объясняется тем, что силы взаимодействия молекул, расположенных в поверхностном слое (равном по толщине радиусу молекулярных сил), лишь частично компенсируются однородными молекулами. С некомненспрованностью молекулярных сил связано и наличие избыточной свободной энергии поверхности. Эта свободная энергия, отнесенная к единице поверхности, называется поверхностным натяжением и выражается в эрг1см или dunj M. С понижением свободной энергии в поверхностном слое (поверхностного натяжения) самопроизвольно начинается процесс [c.190]

    Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства 1ефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы (асфальтены, механические примеси) и дисперсионной среды (высокомолекулярные углеводороды, смолы), термодинамически и кинетически неустойчива тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические воздействия и другие факторы. [c.56]

    При сближении двух тел до расстояний, сопоставимых с дальностью действия межмолекулярных сил, между ними возникают поверхностные силы взаимодействия, которые действуют лишь в сфере молекулярного поля и на расстояниях от поверхности раздела, превышающих радиус этой сферы, равны нулю. Эти силы, являющиеся следствием ненасыщенности межмолекулярных сил на поверхности фаз и зависящие от природы когезионных сил в фазах, всегда выступают как силы притяжения. Ненасыщен-ность межмолекулярного взаимодействия на внешней поверхности частицы приводит к образованию избыточной поверхностной энергии между фазами. Наличие определенного избытка свободной энергии, сосредоточенной в поверхностньге слоях на границе раздела фаз и пропорциональной этой поверхности, обусловливает стремление любых дисперсных систем занять минимальную поверхность раздела фаз. Следствием такого свойства дисперсных систем является стремление в изотермических условиях жидких частиц к коалесценции и твердых частиц к агрегированию, сопровождающихся понижением свободной поверхностной энергии пропорционально убыли поверхности. Термодинамически поверхностную энергию можно характеризовать через уравнение для внутренней энергии и=Р+Тз. Применительно к процессу образования новой поверхности и есть поверхностная энергия, Р - свободная энергия образования поверхности и Тз - тепловой эффект процесса, где 8 = с1Р МТ - температурный коэффициент свободной энергии образования поверхности. Известно, что внутренняя энергия системы является результатом взаимодействия частиц и их кинетической энергии. В изотермических процессах определяемая температурой кинетическая энергия частиц остается постоянной, поэтому все изменения внутренней [c.93]

    Прочность коагуляционных контактов определяется ван-дер-ваальсовыми молекулярными силами сцепления через тончайшие прослойки дисперсионной среды, фиксированная толщина которых соответствует минимальному значению поверхностной энергии Гиббса [185]. Поэтому коагуляционные структуры отличаются сравнительно слабыми контактами между частицами (в среднем 10-">Н на контакт) и тиксотропной обратимостью вследствие наличия частиц, способных совершать броуновское движение. Истинная прочность контакта зависит от условий его образования, природы компонентов системы и расстояния между взаимодействующими частицами [185]. Сила сцепления в контактах должна быть достаточ- [c.102]

    Наряду с адсорбцией ионов, вызываемой электростатическими силами, может иметь место специфическая для каждого сорта частиц адсорбция, вызываемая силами Ван дер Ваальса или химическими силами. Проявление последних приводит к адсорбции ионов на одноименно заряженной поверхности, а также к адсорбции органических веществ молекулярного типа. При этом влияние анионов может наблюдаться не только на восходящей ветви электрокапиллярной кривой (электростатические силы), но и на нисходящей (химические силы). Аналогичный эффект оказывают катионы. Соответственно максимум электрокапиллярной кривой смещается в электроотрицательную (действие анионов) или электроположительную (действие катионов) сторону. Так как работа адсорбции положительна (процесс совершается самопроизвольно), поверхностная энергия адсорбента уменьшается, т. е. уменьшается а. В присутствии поверхностноактивных веществ молекулярного типа смещение максимума не наблюдается, но величина о заметно снижается. Смещение потенциала электрода в положительную или отрицательную сторону до значений, при которых электростатические силы начинают преобладать над силами специфической адсорбции, приводит к прекращению действия поверхностно-активных веществ, вследствие их вытеснения из двойного электрического слоя, и электрокапиллярная кривая сливается с кривой, полученной в отсутствие поверхностно-активных веществ. Соответствующие потенциалы называются положительным и отрицательным потенциалами десорбции (е .с и бдес) и ограничивают область потенциалов, внутри которой происходит адсорбция поверхностно-активных веществ (от бдес до бдес). [c.100]

    В случаях систем жидкость — газ (пар) можно пренебречь взаимодействием между поверхностными молекулами жидкости, и молекулами газа вследствие разреженности газовой фазы. Таким образом, поверхностное натяжение в системе жидкость — газ (Ж—Г) целиком определяется притяжением поверхностного слоя со стороны жидкой фазы, т. е. внутренним давлением жидкости. Если заменить газовую фазу второй жидкостью, не смешивающейся с первой, то притяжение со стороны второй жидкой фазы приведет к уменьшению некомпенсированности молекулярных сил в поверхностном слое и, следовательно, к уменьшению свободной поверхностной энергии. В результате межфазное натяжение 012 на границе раздела двух абсолютно несмешивающихся жидкостей будет равно разности поверхностных натяжений о°1 и чистых жидкостей на границе с собственным паром  [c.25]

    Изложенные выше соображения о взаимодействии молекулярных сил соприкасающихся фаз находят свое подтверждение в наличии тепловых эффектов смачивания, что впервые было обнаружено Пулье в 1822 г. Длительное время считали, что теплота смачивания возникает вследствие сжатия жидкости на поверхности диспергированного вещества под действием сил поверхностного слоя. Однако это не согласуется с результатами экспериментов, которые можно объяснить причиной изменения свободной поверхностной энергии при взаимодействии смачиваемого тела с жидкостью. [c.111]

    Наличие свободной поверхностной энергии можно объяснить специфической нескомпенсированностью молекулярных сил (ненасыщен- [c.15]

    Рассмотренные в предыдущих главах закономерности поверхностных явлений в одно- и двухкомпонентных системах на границах раздела конденсированных фаз с собственным паром (или воздухом) во многом приложимы и к границам раздела между двумя конденсированными фазами I— двумя жидкостями, жидкостью и твердой фазой или двумя твердыми фазами. В то же время эти границы имеют и ряд особенностей, связанных прежде всего с тем, что в них межмолекулярные взаимодействия частично скомпенсированы, причем степень насыщения поверхностных сил определяется близостью молекулярной природы контактирующих фаз. Адсорбция ПАВ на таких межфазных поверхностях может очень сильно понижать их поверхностную энергию, что имеет принципиальное значение в связи с рассматриваемой в гл. IV, VIII—X ролью ПАВ в образовании и разрушении дисперсных систем. [c.81]

    Основная особенность высоко днсперсных систем — это наличие высокоразвитой поверхности раздела фаз. Влияние границ раздела фаз и связанных с ними поверхностных явлений на свойства дисперсных систем обусловлено прежде всего существованием избыточной поверхностной энергии на этих границах. Избыток межфазной энергии обнаруживается в действии вдоль поверхности поверхностного натяжения, характеризующего стремление системы уменьшить площадь поверхности раздела фаз. Вместе с тем поверхностная энергия непосредственно связана с проявлением особых поверхн(Ютных сил—силового поля, сохраняющего заметную интенсивность и на расстояниях от поверхности, значительно превышающих молекулярные. [c.8]

    Наличие свободной поверхностной энергии можно объяснить специфической нескомпенсированностью молекулярных сил (менасыщенностью связей) на поверхности раздела фаз, вследствие чего образование новой поЕ>ерхности требует затраты работы на выведение некоторого числа молекул из объема фаз на их поверхность, где взаимодействия между молекулами отличаются от взаимодействий в объеме фаз. [c.18]


Смотреть страницы где упоминается термин Поверхностная энергия и молекулярные силы: [c.118]    [c.303]    [c.24]    [c.64]    [c.355]    [c.11]    [c.287]    [c.28]    [c.215]    [c.169]   
Смотреть главы в:

Физико-химия коллоидов -> Поверхностная энергия и молекулярные силы




ПОИСК





Смотрите так же термины и статьи:

Поверхностная энергия



© 2025 chem21.info Реклама на сайте