Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетероциклические ароматические

    Гетероциклические ароматические углеводороды [c.251]

    Хотя не существует аминокислот, производных анилина, в биологических системах можно найти примеры расположения экзо-циклических аминогрупп на гетероциклическом ароматическом кольце. Наиболее известны пурины (аденин и гуанин) и пиримидин (цитозин). Их свойства обсуждаются в гл. 3. [c.41]


    Показано, что даже стирол может реагировать таким образом [653]. Некоторые гетероциклические ароматические кольца (в частности, фурановые) также могут быть диенами в реакции Дильса — Альдера. В реакцию вступают также некоторые диены, сопряженная система которых содержит гетероатомы например —С = С—С = 0, 0 = С—С = 0, N = 0—С = М [646] В случае как углеродных систем, так и систем с гетероатомами диен может представлять собой сопряженный енин. При под ходящей геометрии молекулы диен может и не быть сопряжен ным, например [654]  [c.240]

    Гидрирование гетероциклических ароматических соединений [c.421]

    Структуры бензола и азотной кислоты описывались с помощью двух эквивалентных резонансных структур. Попробуем теперь выразить с помощью резонанса структуру гетероциклического ароматического соединения пиррола. Исходя из резонансной структуры I, мысленно сдвигая л-электроны и свободную пару электронов вдоль кольца, можно получить еще четыре структуры П—V  [c.70]

    Укажите, какие из них относятся а) к гетероциклическим соединениям б) к гетероциклическим ароматическим соединениям. [c.204]

    Гетероциклические ароматические соединения а) фуран е) тиофен  [c.242]

    Бензоидные гетероциклические ароматические системы [c.307]

    Электростатические эффекты могут передаваться с высокой эффективностью через систему ароматических колец. Это обстоятельство, несомненно, очень важно для функционирования биологически активных молекул, содержащих гетероциклические ароматические системы. Рассмотрим влияние степени протонирования азота пиридинового кольца на величину микроскопической константы связывания протона фенолят-анионом пиридоксина  [c.260]

    Аналогичные закономерности наблюдаются и у гетероциклических ароматических аминов с аминогруппой в цикле и в боковой цепи. [c.131]

    Присоединение к азотсодержащим гетероциклическим ароматическим соединениям [c.63]

    His подходит для каталитических целей. Г истидин содержит гетероциклическую ароматическую боковую цепь, для которой рК = = 6,0 (табл. 1.1). В физиологическом интервале pH его имидазоль-ное кольцо может либо оставаться незаряженным, либо присоединять ион Н" из раствора. Поскольку такое присоединение происходит достаточно легко, гистидин может выполнять роль ката- [c.21]

    Глава 27. Гетероциклические ароматические соединения [c.671]

    Гетероциклические ароматические соединения представляют собой сложные циклические я-системы с непрерывным сопряжением к- или ия-электронов по всему замкнутому циклу. Обычно это производные сопряженных открытых (линейных) тс-систем — аминов, диаминов, полиаминов, простых эфиров, сульфидов, селенидов, теллуридов и многих других элементов, которые после замыкания цикла несут в ароматической я-системе один или несколько гетероатомов (М, О, Р, 8 и др.). Все гетероциклы являются би- или полифункциональными производными углеводородов. Так, например, пиррол имеет две функциональные группы, я-электронные (этиленовые) и вторичного амина  [c.671]


    В данной главе приведены основные принципы, позволяющие уяснить методы, на первый взгляд различные, используемые для конструирования гетероциклических ароматических соединений из предшественников, не содержащих гетероциклического фрагмента. Кроме того, обсуждаются принципы построения гетероциклов, анализируются типы реакций и возможные комбинации реагентов, приводящих к их образованию. [c.81]

    Карбоксилирование ароматических гетероциклических оснований [I]. Карбоксилирование гетероциклических ароматических оснований можно проводить окислительно-восстановительным разложением в их присутствии оксигидроперекисей эфиров а-кетокислот. [c.228]

    ГЕТЕРОЦИКЛИЧЕСКИЕ АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ [c.149]

    Гетероциклические ароматические соединения. В ряду этих соединений встречаются оба вида сопряжения — л,л- и р,п сопряжение. [c.47]

    Для ароматических соединений бензольного ряда, конденсированных и гетероциклических ароматических соединений (табл. 5.3) характерны реакции, не приводящие к нарушению ароматической системы, т. е. реакции замещения. Они не склонны вступать в реакции присоединения или окисления, ведущие к нарушению ароматичности. [c.134]

    Протонирование сложным образом влияет на химические сдвиги С органических кислот, аминов, гетероциклических ароматических соединений (см. разд. 11 и 19). На рис. 5.18 приведены эффекты протонирования в линейных а-карбоновых кислотах и а-аминах. Здесь изменение химических сдвигов а-уг- [c.291]

    Основные принципы, определяющие степень и тип реакционной способности гетероциклических ароматических соединений, аналогичны принципам, известным для алифатических и бензоидных систем. Важное значение имеют следующие три принципа  [c.16]

    Это особенно необходимо для очень активных катализаторов крекинга больших многоядерных соединений, причем более низкие температуры благоприятствуют крекингу посредством реакции конденсации карбоидных радикалов, являющихся зародышами образования углерода. Если требуются высокие температуры, то может оказаться необходимой закалка промежуточных свободных радикалов, которые инициируют конденсацию. Одним из путей, которым это может быть достигнуто, является использование доноров водорода, которые селективно переносят его атомы к этим промежуточным соединениям. О некоторой работе в этой области недавно было сообщено [31] в связи с использованием донора водорода для сероочистки гетероциклических ароматических соединений. [c.204]

    Этиленовые установки, предназначенные для переработки газойлей, отличаются от установок, перерабатывающих бензиновые фракции, рядом технических особенностей. Это обусловлено спецификой состава утяжеленных фракций большей молекулярной массой, наличием полициклических и гетероциклических ароматических и полициклических нафтеновых соединений, повышенной долей 8-содержащих и ароматических соединений, менее благоприятным соотношением [c.774]

    Пиридин содержит в цикле вместо одной СН-группы атом азота, чередующиеся двойные и простые связи и относится к ряду гетероциклических ароматических соединений на атоме азота имеется НЭП, которая находится в состоянии 5/7 -гибридизации и ориентирована в плоскости молекулы, вне цикла. [c.54]

    Доля углерода в карбо- и гетероциклических ароматических фрагментах молекул асфальтенов составляет 26...95 %, а в циклоалкановых структурах 6...56%[4,5,6,22,30,32,54,64,68,72].Число ароматических колец в средней молекуле 6...38. Они распределены по 2...4 полициклическим звеньям смешанного строения. Нафтеновые структуры вместе с ароматическими образуют компактную полициклическую молекулярную структуру [30,68,73...75]. Не исключается присутствие неконденсированных циклоалкановых, ароматических и гетероатомных колец [30,75]. Степень замещения конденсированных ароматических структур 39...74%.  [c.15]

    Гетероциклические ароматические системы, как и производные бензола, характеризуются энергией резонанса, указывающей на выигрыш энергии за счет сопряжения. Для пятичлеиных гетероциклов эта энергия составляет 92— 117 кДж/моль, для бензола— 150 кДж/моль, для 1,3-диенов— 12,5 кДж/моль. [c.392]

    В этой книге по техническим причинам ароматические кар-боциклические ядра будут изображаться чаще всего в виде цикла со вписанной окружностью, а гетероциклические ароматические системы — с помощью сопряженных двойных связей. [c.67]

    Гетероциклические системы. Явление ароматичности не ограничивается карбоциклическими соединениями. Замещение какого-либо из углеродных атомов в перечисленных выше соединениях на другие атомы дает новые ароматические системы при условии, что я-электронная система не изменяется. Замещение СН-групп в бензоле на изоэлектронный (т. е. содержащий такое же число электронов) азот приводит к образованию серии гетероциклических ароматических соединений пиридин, пиридазин, пиримидин и пиразин. Возможно и дальнейшее замещение. Во всех этих соединениях циклическая бя-электрон-ная система ( ароматический секстет ) использует по одному электрону от каждого атома кислорода и азота, оставляя по свободной паре электронов на р -орбитали каждого азота на месте бензольной связи С—Н. В результате эти гетероциклические соединения обладают слабоосновными свойствами, основность свободной электронной пары на р -орбитали значительно меньше, чем свободной пары на 5рЗ-орбитали (ср. С—Н-кислотность в алканах и алкинах, разд. 8.2.1). Циклопен-тадиенид-анион можно также рассматривать как родоначальное карбоциклическое соединение серии гетероциклических ароматических соединений. Фуран и тиофен имеют ароматический секстет, в котором по одному электрону дают каждый из четырех углеродных атомов (т. е. две двойные связи), а два электрона являются свободной парой кислорода или серы. В пирроле [c.306]


    Спектры ЯМР С гетероциклических ароматических соединений качественно напоминают спектры замещенных алкенов, однако влияние гетероатома проявляется не так заметно, как, например, в алкенах. Для пиррола влияние атома азота проявляется в смещении резонанса сигналов 2 и 3 атомов в более сильное поле (на 10 м. д. для 2 атомов и - 20 м. д. для 3 атомов) по отнолгению к сигналу бензола [136]. Введение дополнительного атома азота в пятичленном цикле приводит к слабопольному сдвпгу для 2 атома. Смещение сигнала 3 атома фактически не наблюдается. Химические сдвиги С для некоторых азотсодержащих пятичленных гетероциклов приведены ниже [136]  [c.159]

    Г. МИКРОДЕКАРБОКСИЛИРОВАНИЕ АРОМАТИЧЕСКИХ, ГЕТЕРОЦИКЛИЧЕСКИХ (АРОМАТИЧЕСКОГО ТИПА) И а-ОКСИКАРБОНОВЫХ КИСЛОТ [c.133]

    Эта глава посвящена строению ароматических гетероциклических соединений и кратким сведениям об их физических свойствах [1]. При описании строения ароматических гетероциклов нами был использован метод валентных связей. Применение этого метода, как мы полагаем, весьма эффективно при рассмотрении реакционной способности таких соединений кроме того, этот метод наиболее подходит для общих учебников по химии гетероциклических соединений. Более фундаментальный подход к описанию строения гетероциклических ароматических соединений на основе метода молекулярных орбиталей до сих пор не нащел широкого применения при рассмотрении реакционной способности таких соединений. Применение в некоторых случаях метода граничных орбиталей [2], хотя и необходимо, однако рассмотрение таких ситуаций выходит за рамки этой книги. [c.15]

    Различие в энергиях основного состояния бензола и гипотетического неароматического циклогекса-1,3,5-триена соответствует степени стабилизации, определяемой специфицеским циклическим взаимодействием шести п-элек-тронов. Такое различие в энергии называется энергией ароматического резонанса. Очевидно, что количественное выражение энергии резонанса зависит от оценки энергии соответствующей неароматической структуры, поэтому (хотя и не только) различные значения энергии резонанса могут быть рассчитаны для различных гетероароматических систем. Однако следует заметить, что абсолютное значение энергии резонанса не такая уж важная характеристика, гораздо большее значение имеет ее относительное значение. С уверенностью можно утверждать, что резонансная энергия бициклических ароматических соединений, таких, как нафталин, значительно меньше, чем сумма энергий резонанса двух соответствующих моноциклических систем. Это означает, что в результате образования интермедиата (например, при реакции электрофильного замещения, разд. 2.2.2) потеря в энергии стабилизации меньше для бициклических систем, поскольку одно бензольное кольцо остается незатронутым в ходе реакции. Энергия резонанса пиридина того же порядка, что и энергия резонанса бензола, а энергия резонанса тиофена меньше по значению, чем энергия резонанса бензола. При переходе к пирролу и, наконец, к фурану наблюдается дополнительное уменьшение энергии стабилизации. Истинные значения энергии стабилизации для этих гетероциклических ароматических соединений варьируются в зависимости от сделанных предположений относительно энергии соответствующих им неароматиче-ских систем относительные энергии резонанса для бензола, пиридина, тиофена, пиррола и фурана равны 150, 117, 122, 90 и 68 кДж/моль соответственно. [c.17]

    Процессы, известные как реакции викариозного нуклеофильного замещения атома водорода (в англоязычной литературе принято обозначение VNS — Vi arious Nu leophili Substitution), широко применимы как к карбоциклическим, так и гетероциклическим ароматическим соединениям. Обычно для реализации [c.41]

    Гетарилцинковые производные нашли широкое применение в катализируемых палладием реакциях сочетания, поскольку в случае использования таких металлоорганических соединений многие функциональные группы остаются незатронутыми. Цинкорганические соединения можно получить реакцией обмена между галогенидами цинка и гетариллитиевыми соединениями [ 123], однако такой метод получения органических соединений цинка значительно ограничивает возможность их использования. Другой эффективный подход к синтезу таких соединений связан со взаимодействием галогенопроизводных гетероциклических ароматических соединений либо с активированным цинком (цинк Рике [124]) или коммерчески доступной цинковой пылью [125], причем этот подход применим как к электроноизбыточным, так и электронодефицитным гетероциклическим системам. [c.61]

    Гетероциклические ароматические соединения обладают вышкой термодинамической устойчивостью. Неудивительно, что 1менно они служат структурными единицами важнейших биоло-ических полимеров — нуклеиновых кислот (см. 13.1). [c.49]


Смотреть страницы где упоминается термин Гетероциклические ароматические: [c.342]    [c.470]    [c.807]   
Органическая химия Часть 2 (1994) -- [ c.0 ]

Органическая химия Том1 (2004) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте