Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тонкослойная хроматография методика

    Методики получения распределительных хроматограмм на бумаге. Методика проведения анализа на бумаге аналогична методике, применяемой в тонкослойной хроматографии и описанной в гл. IV. Анализ может выполняться восходящим или нисходящим способом на полосках специальной бумаги. Кроме того, исходная смесь может наноситься в центр круга и далее распределяться концентрическими кольцами от центра к периферии. В этом случае получают круговую хроматограмму. Прибор для получения круговой хроматограммы изображен на рис. 11.2, а приспособление крз жка бумаги для получения круговой хроматограммы — на рис. 11.3. Для подачи подвижной фазы в центр круга в бумаге вырезается фитиль, как показано на рис. 11.3. Конец фитиля опускается в сосуд с подвижной фазой. При нисходящей хроматографии пользуются прибором, изображенным на рис. 11.4. Стартовая линии а этом случае находится в верхней части полоски бумаги. [c.219]


    Наибольшее применение, как уже отмечалось, тонкослойная хроматография нашла в анализе органических соединений природного и синтетического происхождения. В настоящее время разработано большое количество методик разделения и определения различных классов органических веществ — от простейших углеводородов до витаминов, антибиотиков и нуклеиновых кислот. [c.140]

    Следует отметить, что для анализа пестицидов (особенно при изучении их метаболизма) большой интерес представляет использование тонкослойной хроматографии, методика работы по которой достаточно подробно описана в недавно вышедших книгах Ахрем А. А., Кузнецова А. И., Тонкослойная хроматография, изд. Наука , 1964 г. Хроматография в тонких слоях, под редакцией Шталя Э., изд. Мир , 1965 г., а также автоматических методов анализа [c.9]

    В НИИнефтеотдаче группой авторов разработана методика определения химической стабильности НПАВ ОП-7, ОП-10 и АФд-12. С ее помощью можно определить качественно и даже количественно наличие не только молекул ПАВ, но и продуктов их деструкции. Контроль за химической стабильностью НПАВ осуществляется методом тонкослойной хроматографии. Сравнение хроматограмм исходного Неонола АФд-12 и продуктов деструкции, полученных в результате эксперимента, позволяет качественно оценить процесс химической деструкции для условий конкретного месторождения. Появление на хроматограмме зон, отличных от зоны исходного ПАВ, свидетельствует о нестабильности последнего исчезновение зоны, характерной для исходного ПАВ,— о химическом превращении всего ПАВ. Продукты химической деструкции и исходный НПАВ выделяли методом колоночной хроматографии. Для количественного определения Неонола и продуктов деструкции использовали растворители, имеющие различную элюирующую способность. [c.99]

    При получении веществ заданного строения по давно известным и многократно проверенным методикам при соблюдении всех условий синтеза идентификация полученных продуктов заключается только Б определении некоторых констант после соответствующей очистки. Такими константами являются для жидких веществ температура кипения при нормальном или другом, но вполне определенном давлении, абсолютная илн относительная плотность при стандартной температуре, показатель преломления нри указанной длине волны падающего света и т. д. Для твердых (при обычных условиях) веществ такой константой служит температура плавления, сравнительно мало зависящая от давления. Однако для подтверждения чистоты вещества можно использовать во многих случаях н температуру кипения прн определенном давлении. Чистоту полученного вещества часто подтверждают тонкослойной хроматографией, если разработаны условия ее проведения. Таким образом, идентификация полученного но проверенной методике вещества сводится по сути дела к оценке его чистоты. [c.63]


    Дополнительную очистку концентрата осуществляли также на хроматографической колонке с последующей оценкой наличия в нем нафтеновых кислот методом тонкослойной хроматографии по методике, примененной для этих целей в работах [79, 68]. Концентрат пропускали через колонку с силикагелем марки Ь 100/160, активизированным в течение 6 ч при 180°С. Отбирали 40-50 фракций по 10 мл, элюируемые смесью селективных растворителей (бензол  [c.68]

    Каждую реакцию необходимо проводить при определенных и воспроизводимых условиях. Ход реакции следует постоянно контролировать при помощи простых, но четких критериев. Для этого обычно используют тонкослойную хроматографию (ТСХ, с. 43), ИК-спектроскопию и ЯМР реакционной смеси, а также определение pH. Полноту реакции следует проверить надежным методом, а не просто соблюдать время превращения, указанное в методике (о разделении и очистке см. разд. 1.5). [c.26]

    Наиболее ценные результаты дает применение тонкослойной хроматографии в качестве метода оценки низких уровней примесей в медицинских веществах. Для этой цели вещество наносят на хроматографическую пластинку и после хроматографирования любые вторичные пятна, которые могут быть видны на хроматограмме после соответствующего проявления, сравнивают по размеру и интенсивности с пятнами, которые дают небольшие количества ожидаемых примесей при одновременном хроматографировании на той же пластинке. Для этой методики нужно иметь в наличии ожидаемые примеси, поэтому в некоторых статьях предписывается использование аутентичных образцов примесей. Часто бывает, что в лабораториях этих примесей нет в таких случаях можно сравнивать вторичные пятна, образующиеся от следовых количеств примесей, с пятном, полученным при хроматографировании на той же пластинке соответствующего небольшого количества испытуемого вещества. Этот прием не всегда возможно применить, так как примеси и испытуемое вещество могут по-разному реагировать на метод обнаружения, однако с его помощью можно получить приемлемый критерий, по которому можно судить об уровне примеси в веществе. Третья, иногда рекомендуемая методика состоит в нанесении такого количества испытуемого вещества, при котором после хроматографирования не появляется никаких вторичных пятен, если образец приемлемо чист. Это наименее удовлетворительный из всех трех методов, так как возможность увидеть вторичное пятно зависит от субъективных особенностей наблюдающего, а интенсивность пятен на хроматограмме может значительно варьировать в зависимости от конкретных условий хроматографирования. [c.94]

    Что касается органических веществ, то экстракционное концентрирование применяется для полярографического определения гербицидов, пестицидов, гиббереллинов и др. В частности, для определения 7-гексахлорциклогексана в воде проводили [93] его четырехкратное экстрагирование бензолом или гек-саном, после отгонки растворителя на водяной бане остаток растворяли в 10%-ном спирте и полярографировали на фоне 0,01 М раствора М(СНз)4Вг. Эта методика позволяет определять 0,5—10 мкг/л органического вещества с погрешностью определения 5—9%. При необходимости определения вещества в концентрации 0,5—1 мкг/л для его концентрирования применяют тонкослойную хроматографию. [c.78]

    Смеси можно хроматографировать не только на колонках пористого геля, но и в однородном тонком слое адсорбента. Тонкослойная хроматография получила широкое распространение в современной лабораторной практике начиная с 1956—1958 гг. после того, как Сталь [16] описал простую стандартную методику приготовления тонкого слоя адсорбента. [c.231]

    Ясно, что в таких исследованиях метод колоночной хроматографии неприменим, тогда как тонкослойная хроматография — очень простая, быстрая и удобная процедура, при которой разделяемые вещества обнаруживаются достаточно легко она не требует дорогостоящей аппаратуры и применима для массовых испытаний. Правда, ее разрешающая способность значительно уступает колоночной ионообменной хроматографии. Несмотря на это, относительно молодая методика быстро распространяется во всех областях химии, и это не случайно. [c.243]

    Во всех до сих пор разработанных методиках ионообменной тонкослойной хроматографии ограничиваются одномерным разделением. Это одно из преимуществ данного метода по сравнению с классическими методами тонкослойной хроматографии. Для получения однозначной и простой для оценки картины следует в двух местах пластинки (в виде точки или полосы) нанести соответствующие контрольные смеси. Это очень облегчает идентификацию, а если по какой-то причине хроматографическая картина отличается от ожидаемой, тогда с помощью контрольной смеси можно выяснить причину неполного разделения и определить состав образца  [c.248]

    Единая методика анализа антиоксидантов в резине методом тонкослойной хроматографии отсутствует. Условия анализа, выбор сорбентов, системы растворителей изложены в работах [73, 142— 146, 149]. Для антиоксидантов аминного типа лучшее разделение достигают со следующими системами растворителей — бензол ацетон концентрированная гидроокись аммония (100 5 0,1) и циклогексан бензол ацетон (100 10 1), для фенольного типа — бензол, я-гексан бензол (8 1) [137]. При разделении производных фенола со сложной пространственной структурой (продукты НГ-2246, П-23, тиоалкофен БЦ) применяют н-гексан этилацетат (9 1) [148]. [c.67]


    Предложено значительное число методик, основанных на использовании методов бумажной и тонкослойной хроматографии. Например, разработана простая методика качественного анализа обычных катионов на основе радиальной хроматографии. В этом случае использовались бумажные фильтры с белой лентой диаметром 11 см. Предложены схемы качественного анализа катионов с использованием ионообменников. При этом в ряде случаев применялись обычные реактивы. [c.62]

    Известны методы тонкослойной хроматографии, когда разделение осуществляется в тонком слое адсорбента, нанесенного на пластинку. Эти методы описаны для разделения сложных смесей, содержащих серебро и другие благородные металлы, а также медь, свинец, ртуть и другие элементы. Хроматографирование обычно проводится в слое силикагеля или целлюлозы, в качестве подвижных растворителей применяют растворы комплексообразующих веществ, например дитизон, диэтилдитиокарбамат и др. Краткие данные об этих методиках приведены в табл. 39. [c.170]

    Классическая, наиболее простая и широко используемая методика тонкослойной хроматографии включает проведение следующих основных операций 1) нанесение анализируемой пробы на слой сорбента 2) разделение компонентов пробы на отдельные зоны в потоке подвижной фазы 3) обнаружение зон на слое сорбента (часто реагентом, образующим с разделенными веществами окрашенные соединения) 4) количественная оценка полученного разделения, включая определение величины удерживания и определение содержания вещества в зонах на хроматограмме. [c.5]

    В книге, наряду с изложением теоретических основ перспективных аналитических методов, приведены практически ценные прописи методик анализа важнейших соединений, представляющих интерес для клинической биохимии. Авторы книги — высококвалифицированные специалисты ЧССР, разработавшие ряд оригинальных методов в тонкослойной хроматографии лекарственных веществ. [c.4]

    Сравнивая тонкослойную хроматографию с колоночной, можно отметить следующие преимущества первого метода 1) простоту приемов и оборудования 2) невысокую стоимость анализа 3) большие потенциальные возможности (для управления процессом разделения используют не только жидкую, но и газовую фазу возможно качественное и количественное определение всех анализируемых соединений независимо от их хроматографической подвил<ности). Необходимо указать, однако, и на некоторые недостатки классического метода по сравнению с колоночной детекторной жидкостной хроматографией, а именно на существенную длительность высокая трудоемкость и продолжительность характерна также для методики количественного определения. [c.6]

    Методика проведения разделения. До первых попыток проведения хроматографического разделения следует подумать о следующих факторах поведение пробы в тонкослойной хроматографии, адсорбент, материал колонки (стекло, найлон), способ заполнения колонки и способ проявления колонки. [c.439]

    Состав фенолов был исследован методом тонкослойной хроматографии на незакрепленном слое окиси алюминия по методике, описанной для фенолов сланцевой смолы [1]. Установлено наличие оксибензола, двухатомных фенолов и их производных с заместителями в кольце. Трехатомные фенолы в условиях анализа не элюировались. [c.4]

    К. М. Ольшанова и Л. А. Куницкая [164] разработали методику качественного анализа катионов III и IV аналитических групп с помощью осадочной тонкослойной хроматографии. В качестве сорбента применяли оксид алюминия ( для хроматографии ) и силикагель КСК-2. Сорбенты без добавления связующего вещества наносили на стеклянную пластинку (9x12 см) слоем 0,4 мм. Для исследования применялись растворы соответствующих солей в пределах концентраций 0,1—0,25 н. по отношению к каждому катиону для открытия катионов применяли высокоселективные проявители, дающие специфическую окраску с исследуемым катионом. Несложная техника выполнения и быстрота метода дают возможность использовать его как контрольный при качественном анализе неорганических веществ. [c.210]

    Хотя оксид алюминия широко и давно используют в колонной и тонкослойной хроматографии, его применение в ВЭЖХ имеет ограниченный характер. Это связано с тем, что микрочастицы оксида алюминия выпускают не все фирмы-производители сорбентов, а привитые фазы на этой основе не выпускаются совсем. Тем не менее в некоторых случаях, когда требуется селективность, отличная от селективности силикагеля, оксид алюминия применяют. Его также используют и в тех случаях, когда нужно перейти к ВЭЖХ от методики ТСХ, размотанной на пластинках с оксидом алюминия. [c.90]

    Несмотря на то что первые исследователи (Стокс и др.) проделали огромную работу, результаты которой были подтверждены новейшими данными, все же многие из ранних исследований были проведены с неразделенными смесями и нечистыми веществами, что часто приводило к ошибочным выводам относительно структуры и свойств фосфазенов. В течение последних пяти-восьми лет исследования в этой области претерпели быстрый, почти взрывной рост, обусловленный широким интересом к строению фосфазенов и к технологии их получения. В настояш ее время по интенсивности исследовательских работ область фосфазеновых соединений уступает только силиконам. В последние годы фосфазеновые соединения стали предметом ряда обзоров [2—5]. Прогресс облегчался наличием новых взглядов на структуру, химическую связь, механизм реакций и стереохимию, а также разработкой новых эффективных методик разделения, особенно газо-жидкостной и тонкослойной хроматографии, и применением рентгеновского и спектроскопического методов анализа при решении вопросов структуры. [c.5]

    Методы разделения с применением тонкослойной хроматографии иногда могут быть усовершенствованы путем многократного хроматографирования (хроматограмме дают высохнуть и вновь хроматографируют в той же системе), непрерывного хроматографирования (подвижная фаза непрерывно испаряется с верхнего края поверхности адсорбента) или двухмерного хроматографирования (хроматограмме дают высохнуть, повопачивают под прямым углом и затем вновь хроматографиоуют, часто в иной системе растворителей, чем та, что была использована первоначально). Юднако интерпретировать результаты хроматографии, если используются такие процессы промежуточного высушивания, надо с осторожностью, так как во время хроматографирования на пластинке может происходить разрушение вещества, например вследствие окисления. Методика двухмерной хроматографии имеет особую ценность для заключения о химических изменениях, происходящих в процессе хроматографирования. Если смесь вначале хроматографируют в одном направлении, а затем под прямым углом в той же системе растворителя, пятна, соответствующие разделенным веществам, будут лежать на пластинке по диагонали при условии, что не возникнет никаких артефактов. [c.95]

    За немногими исключениями, до введения современной высокоэффективной жидкостной хроматографии колоночная ЖХ была препаративным методом. Такие химики, как Кун, Ледерер и Винтерштейн, возродившие метод Цвета в начале 30-х гг., и Райхштейн с сотрудниками, стандартизовавший методологию элюентной ЖХ (в частности, применительно к разделению стероидов), развили основные положения для нагрузки колонки их экспериментальная работа велась с большим числом образцов в течение более чем десятилетия [61]. Мартин и Синдж были первыми, кто развил в хроматографии концепцию теоретических тарелок и жидко-жидкостную распределительную хроматографию [62]. Через десятилетие вслед за стандартизацией Шталем методики тонкослойной хроматографии (ТСХ), адсорбционная ЖХ была поставлена на более прочный теоретический фундамент [39—50]. [c.28]

    Серная кислота. Методика для тонкослойной хроматографии. Пластинку опрыскивают 50%-ной H2SO4 и прогревают при 200°С в течение 10 мин, пока не произойдет обугливания. [c.413]

    Представленные в данной книге методики дают возможность эффективно использовать тонкослойную хроматографию как в самом простом, так и в автоматизированном вариантах. В дополнение к этой книге представляется целесообразным обратить внимание читателя на отечественные монографии по тонкослойной хроматографии [5, 6, 7]. В книге Кибардина и Макарова [7]] рассмотрено отечественное оборудование, используемое для тонкослойной хроматографии. [c.6]

    Для изучения структуры веществ, разделенных и выделенных с помощью тонкослойной хроматографии, часто используют ИК-спектроскопию [6, 33, 48, 78, 158, 182, 190, 196, 258]. Большое число авторов занималось методами выделения необходимых для этой цели количеств веществ. Образец вещества, предназначенный для снятия ИК-спектра, не должен содержать тонкодисперсных частиц хроматографического материала. Поскольку удалить такие частицы фильтрованием или центрифугированием не всегда удается, были разработаны различные методики, гарантирующие чистоту выделенного препарата. Метод фитиль-брусок (Wi k-Sti k) [196] является одним из таких приемов. Сорбент с пятном вещества помещают на дно чашки Петри и добавляют небольшое количество растворителя. Поверх смоченного сорбента помещают заостренную кверху призмочку из бромида калия. Растворитель всасывается призмочкой и испаряется на ее вершинке, причем вместе с растворителем увлекается вещество, которое концентрируется на вершинке. Вершинку отрезают, высушивают и используют для приготовления таблеток. [c.150]

    В последние годы Е.Б. Фроловым и М.Б. Смирновым во многих образцах природных нефтей бьыи обнаружены олефины (до 15%). Авторами разработана и экспрессная методика оценки содержания алкенов в нефтях с помощью тонкослойной хроматографии. Предел обнаружения олефинов — 0,1-0,2%. На хроматограммах олефины идентифицируют как смесь алкенов нормального строения, причем каждый образец олефинов оказался в целом более высокомолекулярным, чем насыщенные УВ той же нефти (Фролов, Смирнов, 1990). При термокаталитическом крекинге, используемом для получения олефинов в нефтехимической промышленности, образовавшиеся алкены характеризовались существенным уменьшением углеродной цепи и молекулярной массы по сравнению с исходными насыщенными УВ. Идентифицированные же в природных нефтях олефины более высокомолекулярны, чем насыщенные. По мнению тех же авторов, олефины нефтей — продукты радиолитического дегидрирования насыщенных УВ нефти под воздействием естественного радиоактивного излучения в недрах. В пользу такого радиолитического механизма образования нефтяных олефинов свидетельствует и тот факт, что они в заметных концентрациях присутствуют в венд-кембрийских и рифейских нефтях юга Сибирской платфор- [c.26]

    Карачи (Захадпая Сибирь) предствлепы методики исследования каротиноидов с помощью тонкослойной хроматографии (ТСХ), спектроскопии УФ- и видимой области и масс-снектрометрии низкого разрелзенпя. [c.133]

    Книга составлена в соответствии с программой к рса Химические методы исследования ядохимикатов . В книге описаны современные методы исследования (экстракция, фотоэлектроколориметрия, спек11рофотометрия, тонкослойная хроматография, газовая хроматография и др.) ядохимикатов приведены подробные методики качественного и количественного определения тридцати ядохимикатов, которые, согласно приказу Министерства здравоохранения СССР, подлежат обязательному исследованию при от равлении неизвестными препаратами. [c.175]

    Второй пример показывает роль тонкослойной хроматографии в выделении пробы. В гл. 15 была описана методика экстракции неомыляе-мых липидных фракций. В лаборатории авторов с помощью этой мето- [c.565]


Смотреть страницы где упоминается термин Тонкослойная хроматография методика: [c.5]    [c.8]    [c.19]    [c.44]    [c.146]    [c.461]    [c.377]    [c.51]    [c.150]    [c.51]    [c.26]   
Идентификация органических соединений (1983) -- [ c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Хроматография тонкослойная



© 2025 chem21.info Реклама на сайте