Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Материалы многослойные

    При выборе материала многослойной мембраны необходимо учитывать влияние толщины мембраны на скорость срабатывания. Мембраны из материала большей толщины имеют меньшую чувствительность, поэтому в каждом конкретном случае предпочтительнее применять тот материал, который при наименьшей толщине обеспечивал бы получение требуемого разрывного давления. Однако с уменьшением толщины увеличивается область рассеяния разрывного давления, что в значительной мере ограничивает применение слишко.м тонкой металлической фольги для изготовления многослойных разрывных. мембран. [c.58]


    Другой способ изготовления многослойного сосуда методом навивки ленты показан на рис. 149. Установка состоит из нескольких сборочных единиц. Вращающийся барабан 1 держит при вращении сердечник 2, на который спирально навивается полосовой материал 3. На сердечнике 2 установлены концевые секции будущего аппарата 4 и 5, одна из которых имеет хвостовик 6, посредством которого удаляется сердечник 2 после того, как изготовлен аппарат. Сердечник может быть разборного типа. [c.226]

    Подины и выстилки. Конструктивный элемент, ограничивающий реакционное пространство снизу, называется подиной. На подину воздействует высокая температура, масса материала и шлака. Подины обычно футеруют из высоко-, огне- и кислотоупорных материалов. Нижняя часть футеровки любой печи и борова, которая выстилается кирпичом, называется выстилкой. Выстилку футеруют независимо от условий работы печи менее огнеупорным материалом большим швом. Подины и выстилки бывают одно- (однослойными) или многорядными (многослойными). [c.298]

    Особенности применения в технологии подготовки воды и очистки сточных вод процессов фильтрования можно проследить на примере очистки жидкости, содержащей в небольшом количестве твердые частицы, растворенные соли, органические вещества и биогенные элементы. Очищаемую жидкость для первоначального удаления твердых частиц обрабатывают на механическом (медленном, скором, многослойном, намывном) фильтре с насыпным или намывным слоем фильтрующей массы, а также на напорном фильтре с плавающей фильтровальной массой. В качестве фильтрующего материала в насыпных фильтрах используют песок, антрацит, дробленый мрамор, керамзит, перлит, а для намывного слоя — перлит, в фильтрах с плавающей загрузкой — поролоновую крошку, пенополистирол. [c.62]

    Чтобы повысить тонкость фильтрования металлических сеток, при очистке масла их иногда применяют в два и более слоев в результате тонкость фильтрования увеличивается за счет частичного перекрытия ячеек в соседних слоях сетки, а грязеемкость материала возрастает вследствие увеличения его общей толщины. Удельная пропускная способность многослойного пакета соответственно уменьшается, однако прямой зависимости этого показателя от числа слоев сетки не наблюдается. Установлено [80], что при размещении сеток в пакете с зазором между ними 1 мм удельная пропускная способность многослойного пакета несколько увеличивается (рис. 29) по сравнению с пакетом, имеющим плотную укладку слоев, что, видимо, объясняется более упорядоченным движением потока масла через пакет при наличии зазора и снижением вследствие этого гидравлического сопротивления. [c.208]


    Из выражения (8.23) следует, что в многослойных конструкциях фильтрующих элементов приведенная стоимость материала должна быть отнесена к числу слоев, обеспечивающих необходимую тонкость фильтрования. [c.234]

    Аналитический расчет многослойной изоляции затрудняется тем, что неизвестна зависимость контактных термических сопротивлений от температуры кроме того, не представляется возможным учесть температурные изменения степени черноты поверхностей и теплопроводности изолирующего материала [6]. [c.120]

    Обладающий большой плотностью слоистый изоляционный материал из алюминиевой фольги и стекловолокна примерно в 35 раз более эффективен в отношении уменьшения теплопередачи, чем лучшие стандартные системы порошковой изоляции [130]. Еще большая эффективность многослойной изоляции достигается при работе ее под вакуумом. Это объясняется тем, что при давлениях ниже 0,0001 мм рт. ст. перенос тепла за счет теплопроводности остаточного газа практически равен нулю [121, 133]. [c.120]

    Имеются данные [119] о том, что коэффициент теплопроводности лучших образцов вакуумно-многослойной изоляции примерно в 8 раз ниже, чем вакуумно-порошковой, экранированной металлическими порошками. Однако при давлениях более 0,01 мм рт. ст. применение дорогого ламинированного материала дает мало преи- [c.120]

    Уже рассказывалось о формировании многослойной тканевой конструкции с ее пропиткой и связыванием смолой в специальной для каждой детали матрице. После полимеризации в печах аэродинамического нагрева и карбонизации в обычных обжиговых печах нужно было определить пористость детали, с ювелирной точностью отрегулировать ее путем осаждения в порах пиролитического углерода. А после этого провести виртуозную операцию силицирования материала детали с таким расчетом, чтобы не нарушить прочность и упругость армирующего углеродного волокна. И это было сделано Должен признаться, что лично я сомневался в надежности такого процесса, но он был освоен. Приходилось рентгеновским аппаратом определять равномерность свойств по полю детали, лечить повторными процессами, и это тоже удалось сделать. [c.237]

    Для защиты деталей газонефтепромыслового оборудования от коррозии, а также для восстановления изношенных поверхностей широкое промышленное применение получили различные методы металлизации, классифицируемые в зависимости от исходного состояния и способа плавления распыляемого материала. Этот метод успешно может быть использован для получения многослойных покрытий. [c.110]

    При проектировании многослойных АВД толщины центральной обечайки 5 и наружного слоя 5 , как правило, принимаются конструктивно, а все остальные слои изготовляют из одного материала, принимая при этом [о] = [о]з =. .. = [а] , = В [c.811]

    Твердость покрытий ниже критического минимума измеряют с помощью технических средств для определения микротвердости. Прибор устанавливают на отполированной поверхности поперечного сечения, измеряют твердость всех компонентов сплавляемого покрытия или системы многослойного покрытия. Во избежание погрешности за счет краевого эффекта необходимо проводить измерения микротвердости вдали от кромки каждого покрытия или компонента системы многослойных покрытий. Следует помнить, что значение микротвердости не обязательно идентично общей твердости материала, хотя разница между этими величинами мала. [c.155]

    Чистый никель имеет ограниченное применение в качестве конструкционного материала и в химической промышленности практически полностью заменен нержавеющими сталями. Высокая устойчивость никеля в щелочах позволяет использовать его в некоторых производственных и лабораторных установках. Наиболее широкое применение получил никель как гальваническое декоративное и защитно декоративное покрытие, наносимое на стальные детали и изделия из медных сплавов самостоятельно или в составе многослойных покрытий. Иногда в химической промышленности применяется плакированная никелем сталь. [c.140]

    Никель. В морской атмосфере скорость коррозии никеля обычно не превышает 0,25 мкм/год [39, 41]. В основном никель используется не как конструкционный материал, а в качестве покрытия, получаемого, например, электролитическим способом. Специально разработанные многослойные покрытия, получаемые электроосаждением меди, никеля и хрома, обеспечивают экономичную и долговечную защиту отливок из стали или сплавов на основе цинка в морских атмосферах. [c.76]

    В настоящее время получить степки больпюй толщины можно путем изготовления многослойных сосудов. Сейчас целесообразность применения многослойных сосудов общенризнана, так как позволяет изготовлять аппаратуру высокого давления больших диаметров со стенкамп практически любой толщины. Внутренней поверхности многослойного сосуда можно придать любые качества, подобрав для внутреннего слоя соответствующий материал. Отпадает необходимость изготовлять весь аппарат из дорогой специальной стали или применять сложные и дорогие устройства защитного слоя внутри сосуда. [c.50]


    На практике мы обычно встречаемся со стенками, состоящими из нескольких разнородных слоев. Такие стенкп называются многослойными. Например, обмуровка топочной камеры печи обычно состоит пз нескольких слоев слоя огнеупорной кладки, слоя простого кирпича, а в некоторых печах предусматривается также слой специального теплоизоляционного кирпича. В любом аппарате установки, хотя бы он был изготовлен из одного материала, в процессе работы стенка может покрываться слоем отложений, например ржавчипы, накипи илп грязи. Таким образом, практически мы обычно сталкиваемся с многослойными стенками. [c.50]

    Футеровку нечи можно выполнять одно- (только из огне- или кислотоупорного материала) или многослойной (внутренний слой из огне- или кислотоупорного материала) и слоя из теплоизоляционных материалов шамота-легковеса, асбестового листа или засыпки и т. д. Если температура на границе слоя из огнеупорного и теплоизоляционного слоев выше допустимой температуры для диатомового материала, то теплоизоляционный слой футеруют шaмoтo -легковесом. [c.300]

    Важнейшее преимущество составных цилиндров заключается в возможности использовать их при давлениях, при которых применение цилиндров со сплошной стенкой при данном материале было бы вообще невозможно, щ двухслойном же цилиндре напряжения по сравнению с моноблоком снижаются. Степень снижения определяется диаметрами составляющих цилиндров, величиной натяга и упругими свойствами материала цилиндров. Очезидно, все р ссуждения относительно двухслойного цилиндра целиком применимы к многослойным сосудам. [c.345]

    Формованные объемные фильтры изготавливают из тех же материалов, что и набивные, но благодаря применению склеивающего вещества они приобретают более равномерную плотность и структуру. Материалом для формования фильтров может служить минеральная вата и древесная мука (двигатель ЯМЗ), а также хлопковые нити с древесными волокнами (английская фирма Winslow). Фильтрующие элементы, формованные из хлопковопдревесной массы, имеют переменную пористость, что повышает степень использования их объема. Этот принцип получил развитие в японском фильтре, где формованный фильтрующий элемент многослойный первый слой —омесь древесной массы и искусственного волокна, второй — бумажная масса, третий — смесь бумажной массы и искусственного волокна. Формованные фильтрующие элементы удобнее в эксплуатации, чем набивные, так как на их замену в корпусе фильтра требуется гораздо меньше времени и при этом исключается довольно трудоемкая операция по равномерному уплотнению фильтрующего материала. В остальном им свойственны недостатки набивных фильтров. [c.260]

    На предприятиях нефтеперерабатывающей и нефтехи.мической отраслей промышленности находят применение разнообразные виды оборудования и аппаратов оболочкового типа. Для обеспечения особых эксплуатационных условий и технологических параметров стенки корпусов большинства таких оболочковых конструкций имеют многослойное матери-ш1ьное оформление (биметаллическое, футеровашюе, с различной изом-цией и др.). [c.24]

    Исходные данные. Внутреннее давление р = 32 МПа, температура среды н аппарате 1с = 200 С, внутренний диаметр обечайки О = 800 мм, толщина слоя многослойной обечайки 5, ,п= 6 мм. расположение слоев — концентрическое, материал обечайки — сталь 09Г2С, скорость коррозии с внутренней стороны корпуса [c.134]

    Конструкции корпуса и других элементов реактора существенно зависят от давления, при котором протекает реакция. Реакторы низкого давления (контактные аппараты, конвертеры) имеют обычно сравнительно тонкостенный сварной цилиндрический корпус, непосредственно к которому крепят решетчатые полки с катализатором. Штуцера для подвода и отвода реагентов обычно приварены к боковой стенке корпуса, В качестве корпусов реакторов высокого давления (10—100 МПа) применяют цельнокованые, ковано-сварные или многослойные сварные цилиндрические толстостенные сосуды (из стали 22ХЗМ), закрытые массивными плоскими крышками (рис, 4,40), Реагенты подводят и отводят через крышки боковые штуцера применяют редко. Для герметизации соединения корпуса и крышки в последнее время используют преимущественно двухконусный самоуплотняющийся затвор, Такие реакторы применяют в основном для синтеза аммиака и метанола (колонны синтеза). Реакция происходит в катализаторной коробке (насадке колонны), закрепленной с зазором относительно корпуса, В зазоре циркулирует холодный синтез-газ, охлаждающий корпус и стенку катализаторной коробки и этим защищающий их от перегрева и соответствующей потери прочности материала стенки, а также от температурных напряжений. Создание крупных колонн синтеза и агрегатов большой единичной мощности обусловлено развитием сварочной техники, в частности электрошлаковой сварки, позволяющей сваривать толстые детали. [c.286]

    Многослойную изоляцию, работающую в условиях глубокого вакуума, называют также вакуумно-многослойной или экранно-вакуумной. Показано [130], что при остаточных давлениях в теплоизоляционном пространстве в интер1зале от 0,0001 до 0,001 рг. ст. ламинированный материал из алюминиевой фольги и стекловолокна в 10 раз более эффективен, чем теплонепрозрачный аэрогель. Скорость испарения в сосудах с сжиженными газами при использовании многослойной изоляции в 20 раз меньше по сравнению с обычными видами вакуумно-порошковой изоляции [133]. [c.120]

    Перенос тепла через многослойную изоляцию определяется в основном двумя факторами излучением и теплопроводностью изолирующего материала. Эти факторы взаимосвязаны, так как теплопроводность изолирующего материала существенно влияет на темпера1уры экранов. Имеющиеся данные показывают, что 30% или больше тепла, переносимого через этот вид изоляции, следует отнести за счет радиации, однако это количество существенно зависит от граничной температуры и распределения температуры в изоляционном слое [129, 133]. [c.121]

    Сосуд LSH-150, выпускаемый фирмой Linde (США), рассчитан на хранение и транспортировку 150 л жидкого водорода (рис. 57). Он представляет собой цилиндрический резервуар высотой 1470 мм и диаметром 508 мм. Вес наполненного резервуара 83,9 кг. Изоляция — многослойная, материал SI-4. Тол-г, г-7 щина изоляции — 25 мм. По- [c.166]

    Особенно значительная коррозия наблюдается при гидрокрекинге высокосернистого остаточного сырья. Гидрокрекинг таких видов сырья сопровождается не только водородной, но и сульфидной коррозией с образованием в случае попадания в реактор воздуха и влаги сильнокорродирующих политионопых кислот. Реакторы представляют собой массивные цилиндрические аппараты с полусферическими (вследствие сложности штамповки толстостенного металла) днищами. Диаметр их от 1,2 до 4 м, толщина стенки от 50 до 255 мм, высота 16—20 м. Применяют аппараты с массивной стенкой, а также многослойные. Высоколегированные стали, стойкие к водородной и сульфидной коррозии, очень дороги поэтому для изготовления массивных стенок реактора в качестве основного материала применяют низколегированную сталь с небольшим содержанием хрома и молибдена (типа 12ХМ, содержащую около 1% Сг и 0,5% Мо). Эта сталь используется двухслойном листовом металле с плакирующим слоем из нержавеющей стали (типа ЭИ-496 или аустенитной стали 18-8). [c.287]

    Коэффициент теплопроводности данного материала зависит от многих факторов. Небольшое количество примесей в чистом металле приводит к значительным иотерям теплопроводности. Облучение быстрыми нейтронами может вдвое и даже больше уменьшить теплопроводность металлов или керамических материалов. Как видно из рис. З.Ь температура существенно влияет на коэффициент теплопроводности. Давление оказывает слабое влияние на теплопроводность газа, содержащегося в пористых материалах, до тех пор, пока межзерен-иые промежутки не станут меньше среднего пути свободного пробега молекул газа. Как показано на рис. 3.2, влияние давления становится существенным при давлениях ниже примерно 10 мм рт. ст. 6]. При низких температурах, когда тепловые потоки излучения малы, молено обеспечить надежную теплоизоляцию путем откачивания газа из пространства между двумя полированными поверхностями до давления 0,01 мм рт. ап. или менее. Еще лучшие термоизоляционные свойства можно получить, заполнив вакуумированный промежуток между поверх юстями отражающим изоляционным мате ) налом. Исключительно хорошими теплоизоляционными свойствами обладает многослойная теплоизоляция, применяемая для криогенного оборудования. Она состоит из нескольких тысяч перемежающихся слоев алюминиевой фольги и пластиковой пленки или стеклянной ткани толщиной в сотые доли миллиметра. Откачивая пространство между слоями, можно получить коэффициент теплопроводности при криогенных температурах до 1,73-10" вт1 м-град). [c.40]

    Эмиссионные свойства углеродных нанотруб измерялись в вакуумной камере при давлении порядка 10 Па. Образцы демонстрируют ток эмиссии до 0.1 мА/мм . Заметный ток эмиссии возникает при приложенных полях от 1 кВ/мм. Эмиссионные свойства сильно зависят от состава вещества, метода получения и т.д. Таким образом, есть перспективы использования углеродных наноматериалов в качестве холодных катодов в рентгеновской спектроскопии. Была показана принципиальная возможность возбуждения ультрамягкой рентгеновской эмиссии с помощью полевого катода из материала, содержащего углеродные многослойные и однослойные нанотрубы. [c.84]

    Ракетные раструбы из материала КУП-ВМ высотой до 1000 мм и диаметром до 1500 мм на конус получают путем намотки на згщанную форму углеродного волокна, пропитанного фенолформальдегидной или иной смолой и формирования таким образом многослойной конструкции. Намоткой руководит вычислительная машина. Затем конструкция подвергается полимеризации в специ- 1льных автоклавах, термообработке во время обжига и высокотемпературной обработке при 2000-2200°С в электровакуумных печах. Там же производится в необходимых случаях пироуплотнение. Затем детали подвергаются механической обработке. Раструб не только несет функциональную задачу, но и является конструктивным элементом, дающим огромный выигрыш по весу изделия. [c.155]

    Для сокращения межванной ошиновки и снижения расхода электроэнергии применяют биполярное включение электродов (рис. 1.4, а и б), при котором аноды и катоды биполярного элемента крепятся к единой токоведущей перегородке (часто изготавливают из различных материалов материала катода с катодной стороны и анода — с анодной) либо биполярным элементом служит однослойный или многослойный металлический лист. [c.12]

    Вакуумно-многослойная изоляция. Если в вакуумном пространстве пэместить между теплой и холодной поверхностями один или несколько изолированных металлических экранов (поз. VI/ на рис. 7.25,(5), то лучистый теплоприток к холодной стенке уменьшится примерно в га- -1 раз, где п — число экранов. Поэтому принципу разработана изоляция, состоящая из чередующихся слоев материала с высокой отражательной способностью, например алюминиевой фольги, разделенных слоями малотеплопроводного тонкого материала, например стеклянной бумаги или ткани из тонких волокон. Такая ва-1 уумно-многослойная изоляция дает наибольший изолирующий эффект из всех из-г.естных видов изоляции. Дополнительное достоинство такой изоляции состоит в том, что она в некоторой степени может служить опорой для внутреннего холодного сосуда. [c.203]

    Фанера представляет собой материал, состоящий но крайней мере из трех слоев древесины в виде шпона и связующего. Расположение волокон древесииы в смежных слоях в большинстве случаев взаимно перпендикулярно, но может быть и параллельным (однослойная фанера, фанера из ядровой древесины, блочная плита, многослойный картон и композиционная фанера) или диагональным (авиационная фанера). Обычно всю фанеру подразделяют на сорта, идущие на внутреннюю и внешнюю облицовку [1, 5, 10]. Каждый сорт имеет ряд подгрупп, характеризующих качество шпо-иа и конструкцию паиели [53]. Фанера для внешней облицовки должна сохранять свои свойства прн многократном увлажнении и высушивании. Классификация фанеры, принятая в ФРГ (стандарт DIN 68705) приводится в табл. 9.3. В США фанеру для внут- [c.132]

    Реакторы представляют собой массивные цилиндрические аппараты с полусферическими (вследствие сложности штамповки толстостенного металла) днищами. Диаметр их от 1,2 до 4 м, толщина стенки 50—255 мм, высота 16—20 м. Применяют аппараты с массивной стенкой, а также многослойные. Высоколегированные стали, стойкие к водородной и сульфидной коррозии, очень дороги, поэтому для изготовления реактора в качестве основного материала применяют низколегированную сталь с небольшим содержанием хрома и молибдена (типа Г2ХМ, содержащую 1 % Сг и 0,5% Мо). Эту сталь используют в двухслойном листовом метал- [c.263]

    Многослойные АВД с концентрическим расположением относительно тонких слоев (способ изготовления А.О. Smith) — выполняют из нескольких обечаек (рис. 26.5), состоящих из относительно большого числа слоев из тонкого листа (4-6 мм), обтягивающих с натягом относительно толстую центральную обечайку (16 - 24 мм), выполненную из материала, имеющего коррозионную стойкость против соответствующей рабочей среды. [c.800]

    Исходные данные. Внутреннее давление р = 32 МПа, температура среды в аппарате = 200°С, внутренний диаметр обечайки О = 800 мм, толщина слоя многослойной обечайки = 6 мм, расположение слоев — концентрическое, материал обечайки — сталь 09Г2С, скорость коррозии с внутренней стороны корпуса П = 0,04 мм/год, срок службы аппарата х = 15 лет, среда пожаровзрывобезопасна и нетоксична. Решение. Расчетное давление р =р = Ъ2 МПа. [c.815]

    Сообщалось также и о так называемых многослойных протекторах из различных протекторных материалов [31]. Такие протекторы должны вначале давать ток больщой силы для предварительной поляризации, а затем в течение длительного времени работать с малым током при возможно большей токоотдаче (в ампер-часах). Когда такие протекторы имеют наружную оболочку из магниевого сплава и сердечник из цинка, температура плавления сердечника оказывается более низкой, чем у материала оболочки. Это соответственно усложняет технологический процесс изготовления. Однако та же цель может быть достигнута и проще при сочетании протекторов из различных материалов [132], например при использовании магниевых протекторов для предварительной поляризации и цинковых или алюминиевых протекторов для длительной защиты. [c.195]

    Точность измерения зависит от соотношения между атомными числами покрытия и основного металла (для успешного-проведения испытаний необходима разность атомных чисел по крайней мере не меньше 5) и толщины основного материала или присутствия тонких промежуточных покрытий разного состава. В случаях многослойных систем, где атомные числа разных слоев покрытий одинаковые (например, Медь-Ьникель-Ь -Ьхром), радиоактивный метод позволяет определить только общую толщину этих металлов, не выделяя составные части. [c.139]

    Расчет тепловой изоляции.. Для определения величины тепловых потерь или снижения температуры теплоносителя в теплообменном аппарате, а также для определения температуры поверхности изоляционного слоя и его оптимальной толщины существуют различные методы расчета, основанные на законах передачи тепла через многослойную стенку. При проектировании тепловой изоляции необходимо учитывать экономические факторы (стоимость одной мегакалории тепла, стоимость изоляционной конструкции, эксплуатационные расходы), имеющие важное значение при выборе изоляционного материала и толщины слоя изоляции [Л. 60]. [c.192]


Смотреть страницы где упоминается термин Материалы многослойные: [c.204]    [c.166]    [c.122]    [c.64]    [c.527]    [c.268]    [c.282]    [c.811]    [c.183]    [c.671]   
Методы и средства неразрушающего контроля качества (1988) -- [ c.126 , c.217 , c.347 ]




ПОИСК







© 2024 chem21.info Реклама на сайте