Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение внутренней энергии адсорбции

    Дифференциальное изменение внутренней энергии при адсорбции. Дифференциальная и изостерическая теплота адсорбции [c.149]

    Величина выражается в мкм и представляет собой константу Генри Кг,с,1, связанную с величиной Zr, р, i уравнением (III, 15). Из величины А может быть рассчитано дифференциальное изменение внутренней энергии адсорбции при нулевом заполнении поверхности по уравнению [c.366]


    Изменение внутренней энергии системы при адсорбции определится из выражения [c.352]

    Изучение термодинамических равновесий в системах газ — жидкость и газ —твердое тело в широком диапазоне температур (450—680 К). Могут быть определены термодинамические характеристики адсорбции и растворения, а именно константы Генри, изменения внутренней энергии, энтропии и теплоемкости при адсорбции, энтальпии и энтро- [c.224]

    Следующей термодинамической величиной, причем такой, которую можно непосредственно измерить (в калориметре), является дифференциальное изменение внутренней энергии при адсорбции, Аи, которое равно дифференциальной теплоте адсорбции при постоянном объеме ду, [c.149]

    Вводя AF, и его производную по температуре в уравнение Гиббса-—Гельмгольца, имеем выражение для предельного (при Г О) дифференциального изменения внутренней энергии при адсорбции [c.153]

    Расчет величин дифференциальных мольных изменений внутренней энергии А(У при разных величинах адсорбции показал, что для воды значения АЬ увеличиваются по мере заполнения поверхности и приближаются к значению теплоты конденсации. Это объясняется сильным взаимодействием молекул воды между собой. Для н-бутанола, диэтилового эфира и н-пентана значения AI7 в исследованном авторами [14] интервале поверхностных концентраций выше соответствуюш,их теилот конденсации. С увеличением, заполнения наблюдается вначале незначительный рост,, а затем уменьшение А I7, что свидетельствует о некоторой неоднородности поверхности и о сильном дисперсионном взаимодействии молекул рассмотренных веш,еств с поверхностью хромосорба 102. [c.102]

    В приложении приведены справочные таблицы констант Генри, дифференциальных мольных изменений внутренней энергии и энтропии адсорбата при малой (нулевой) величине адсорбции чистых веществ на графитированной термической саже.  [c.12]

    От таких упрощенных моделей состояния адсорбированных молекул свободно представление об адсорбированном веществе как о реальном газе, находящемся в потенциальном поле межмолекулярных сил, создаваемом адсорбентом [10, 14, 16, 127]. В этом случае при небольших заполнениях поверхности выражения для изотермы адсорбции и для зависимостей от заполнения изменения энтропии и внутренней энергии адсорбции и теплоемкости адсорбированного вещества можно представить в вириальной форме, т. е. в виде степенного ряда. Константы первых членов этих вириальных разложений представляют соответственно константу равновесия Генри, изменение внутренней анергии при адсорбции, а также изменение теплоемкости адсорбированного вещества при адсорбции при предельно малом (нулевом) заполнении, т. е. эти константы связаны только с межмолекулярным взаимодействием адсорбат — адсорбент. Второй и последующие члены этих вириальных разложений содержат константы, учитывающие парные, тройные и т. д. взаимодействия молекул адсорбата друг с другом при одновременном их взаимодействии с адсорбентом. Молекулярная статистика дает формулы для вычисления этих констант в вириальных разложениях на основе соответствующих потенциальных функций межмолекулярного взаимодействия адсорбат — адсорбент и адсорбат — адсорбат (подробно это рассмотрено в гл. VI и VII). [c.33]


    Использование результатов калориметрических исследований теплот адсорбции и теплоемкостей адсорбционных систем. Результаты калориметрических измерений тепловых эффектов адсорбции могут зависеть от условий протекания процесса адсорбции в экспериментальной установке, а не только от выбранных начальных и конечных состояний системы адсорбат — адсорбент. Поэтому из результатов таких калориметрических измерений надо найти термодинамические характеристики адсорбционной системы, не зависящие от условий проведения калориметрического опыта. Прежде всего, сюда относится получение из результатов калориметрического измерения теплоты адсорбции величины соответствующего изменения внутренней энергии адсорбционной системы и получение из калориметрических измерений при нагревании адсорбционной системы собственно ее теплоемкости и ее изменения, происходящего при адсорбции. Такая термодинамическая интерпретация результатов калориметрических измерений часто встречает затруднения и требует рационального выбора условий проведения этих измерений и учета их конкретных особенностей. При такой интерпретации калориметрических измерений теплот адсорбции, соответствующих переходу адсорбционной системы из некоторого начального состояния в конечное состояние равновесия или близкое к нему, надо, в частности, исключить или учесть возможности совершения над системой внешней работы или теплообмена вне калориметра. [c.104]

    Дифференциальное мольное изменение внутренней энергии при адсорбции газа в рассматриваемых условиях получается из выражений (111,45) для АР и (П1,59) для А5 или дифференцированием выражения (П1,61а) по Г  [c.125]

Рис. IV,5. Зависимости дифференциального мольного изменения внутренней энергии при адсорбции— Д 7 от величины адсорбции Г для аргона на графитированной термической саже (слева) и от величины адсорбции для ксенона на цеолите НЬ1КаХ-1 (справа) [43]. Рис. IV,5. <a href="/info/50769">Зависимости дифференциального</a> <a href="/info/1119379">мольного изменения внутренней энергии</a> при адсорбции— Д 7 от <a href="/info/300861">величины адсорбции</a> Г для аргона на графитированной <a href="/info/23887">термической саже</a> (слева) и от <a href="/info/300861">величины адсорбции</a> для ксенона на цеолите НЬ1КаХ-1 (справа) [43].
    Дифференциальное мольное изменение внутренней энергии адсорбата при адсорбции в равновесных условиях. Обозначим эту величину через ДС/(, . Очевидно [см. выражение (111,64)], что [c.127]

    Интегральное изменение внутренней энергии при адсорбции пара в системе J, Пв в случае, когда < и, в расчете на единицу площади поверхности составляет [c.138]

    Дифференциальное мольное изменение внутренней энергии при адсорбции пара по схеме I, Пв при составляет [c.139]

    Сравнение с выражением (III,64а) для адсорбции идеального газа АС/ = —Rf д 1п рЮТ) + RT показывает, что при адсорбции пара, испаряющегося из жидкости в подсистеме//й, общее дифференциальное мольное изменение внутренней энергии адсорбата в системе I, Пв  [c.139]

    Теплоты адсорбции газов и паров. Рассмотренные в разд. 6 этой главы схемы I, Пб и I, Пв процесса адсорбции (см. рис. П1,13) предполагают постоянство объема системы. При этом условии тепловой эффект процесса равен изменению внутренне энергии этой системы АС/. Интегральное изменение внутренней энергии системы при адсорбции пара по схеме I, Пв выражается уравнением (П1,96) или приближенно уравнениями (П1,96а). При их выводе мы предполагали, что пар поступает в подсистему I с адсорбентом из подсистемы Пв без изменения давления пара над мениском жидкости в микробюретке. На испарение перешедшего в подсистему I количества га = га -f я га молей адсорбата была затрачена скрытая теплота испарения L [или VL в расчете на единицу площади поверхности адсорбента в подсистеме I, см. выражения (П1,96а) и (111,97)]. Однако в рассматриваемом случае, т. е. при переходе этих га молей адсорбата в подсистему I, не производится какой-либо работы внешними силами, так как при соединении подсистем I и Пе нар расширяется в подсистему I самопроизвольно. В одном из опытов, описанных Кальве [29], сосуд с адсорбентом, соответствующий нашей подсистеме /, и сосуд с жидким адсорбатом, соответствующий нашей подсистеме Пв, помещались в один и тот же калориметр, в котором измерялась так называемая чистая теплота адсорбции, т. е. разность между теплотой адсорбции пара и теплотой испарения жидкости в соответствующих условиях. Если положительной счи- [c.141]

    Сопоставление величин изменения внутренней энергии при адсорбции, полученных разными методами. Рассмотрим теперь результаты независимых определений величин АС/ как из исследований адсорбционных равновесий статическими и динамическими методами, так и из калориметрических измерений теплот адсорбции. [c.145]

    Общие уравнения термодинамики адсорбции, рассмотренные в предыдущей главе, еще не позволяют получить уравнение состояния адсорбированного вещества или уравнения изотермы адсорбции и зависимости от величины адсорбции Г дифференциальных мольных изменений внутренней энергии АП и теплоемкости ДС. Они недостаточны также и для получения термодинамических характеристик адсорбционной системы в виде констант, связанных с межмолекулярными взаимодействиями адсорбат — адсорбент и адсорбат — адсорбат. Строгое решение этих задач составляет предмет молекулярно-статистической теории адсорбции, которая излагается в VI и VII главах. Однако это строгое решение пока возможно только для небольших заполнений поверхности. [c.152]


    Эти важные вопросы выходят за пределы этой книги, в которой в дальнейшем основное внимание уделяется небольшим заполнениям поверхности. Подробно получение изотерм адсорбции и зависимостей изменений внутренней энергии и теплоемкости от величины адсорбции при использовании различных моделей уравнения двухмерного состояния и моделей нелокализованной и локализованной моно-и полимолекулярной адсорбции с учетом ассоциации адсорбат — адсорбат рассматривается в подготавливаемой книге Г. И. Березина и А. Б. Киселева, специально посвященной молекулярным и фазовым переходам в адсорбционных системах и теплоемкости этих систем. [c.165]

    Термодинамические характеристики адсорбции благородных газов при малых (нулевых) заполнениях были приведены в табл. 111,2 и даны также в табл. П, 2 Приложения. Константа Генри Кх я величина дифференциального изменения внутренней энергии адсорб- [c.183]

    Изменение внутренней энергии при адсорбции [c.221]

    Вычитая уравнения ( 1,91) и ( 1,91а) при с = с° и р = р° из уравнения ( 1,90), для дифференциального мольного изменения внутренней энергии адсорбата при переходе из объема газа при стандартной концентрации с° (стандартном давлении р°) в адсорбированное состояние при величине адсорбции Г получаем [28]  [c.222]

    Вычитая уравнение ( 1,91) или ( 1,91а) из уравнения ( 1,90) и выражая с или р через Г соответственно с помощью уравнений ( 1,40) и ( 1,41), получаем следующее выражение для дифференциального мольного изменения внутренней энергии адсорбата при адсорбции в равновесных условиях  [c.222]

    Константа Генри Ку и изменение внутренней энергии адсорбата при адсорбции AUi определяются главным образом потенциальной энергией взаимодействия молекулы с адсорбентом вблизи главного потенциального минимума Фо- Поэтому эти термодинамические характеристики адсорбции удобны для исследования межмолекулярного взаимодействия при адсорбции. Расчеты К у и AUy для адсорбции углеводородов на графите производились в работах (2—4, 7—14, 16—18]. Изменения энтропии AS и теплоемкости АС у адсорбата при адсорбции определяются только зависимостью потенциальной энергии Ф взаимодействия молекулы адсорбата с адсорбентом от координат поступательного и вращательного движения молекулы, но не зависят от абсолютной величины потенциальной энергии Ф. Поэтому эти термодинамические характеристики адсорбции удобны для изучения зависимости Ф от положения молекулы положения центра масс и ориентации молекулы по отношению к поверхности адсорбента. Эта зависимость определяет состояние адсорбированных молекул ири нулевом заполнении поверхности, т. е. характер их поступательного и вращательного движения. Расчеты Д5Г и АС у для адсорбции углеводородов на графите производились в работах [1, 3—6, 10, И, 13, 16—18]. [c.305]

    Изменение внутренней энергии системы при адсорбции определяется изменением энергии сольватации при адсорбции х и параметром Хд. [c.120]

    Было рассмотрено два ряда производных бензола моно-н-алкил-бензолы и нолиметилбензолы [21]. Дифференциальное изменение внутренней энергии адсорбции —Шх толуола превышает —МГх бензола на 8,2 кДж/моль (см. рис. У,4 и табл. П, 3 Приложения). Далее при переходе от толуола к этилбензолу —Шх возрастает всего лишь на 3,5 кДж/моль, в то время как переход от толуола к ксилолам вызывает значительно больший рост величины — АС/х — на 9,4 кДж/моль. Это показывает, что замещение в кольцо не равноценно удлинению боковой цепи при адсорбции этих изомеров. Из рис. У,4 видно, что дифференциальное изменение внутренней энергии —АС/ при адсорбции и всех остальных полиметилбензолов значительно превосходит изомерных им моно-н-алкилбензолов. [c.192]

    В работе [15] показано, что порядок элюирования N2, Аг, О2, Кг, Хе на порапаках Р, РЗ, Т и на хромосороах 101, 102, 104 соответствует изменениям внутренней энергии при адсорбции газов. [c.28]

    В книге рассмотрены величины адсорбции и поверхностных термодинамических функций, выраженные по Гиббсу. Молекулярно-статистические выражения для гиббсовых термодинамических характеристик адсорбции получены с помощью большого канонического ансамбля. Они даны в виде вириальпых выражений для изотермы адсорбции и происходящих при адсорбции изменений внутренней энергии, энтропии и теплоемкости. Рассмотрены современное состо- [c.11]

    Интегральное и дифференциальное изменение внутренней энергии. Для получения интегрального изменения внутренней энергии при адсорбции газа АС/ = AF TAS надо воспользоваться выражени-лми (111,42) для AF и (П1,55) для AS [c.124]

    Случаи необходимости калориметрических измерений тепловых эффектов адсорбции. В формулы для изменения внутренней энергии AU при адсорбции газа или пара (см. разд. 5 и 6 этой главы) входят изостерические температурные коэффициенты In с или 1п р. Из рис. 111,11 видно, однако, что изостеры близки к прямым. Это же можно сказать и о зависимости In Ki от 1/Т (см. рис. П1,4). Отсюда следует, что AU в этих сучаях слабо зависит от температуры, особенно в области малых заполнений однородной поверхности. Газохроматографические измерения удерживаемых объемов или статические измерения изотерм адсорбции (см. разд. 1 этой главы) охватывают довольно небольшой интервал температур, составляющий около 50—70 К (это видно из рис. П1,1). В этом случае зависимости In с от IIT при постоянной Г и зависимости In Ki от 1/Г часто практически линейны. Если AU значительно превосходит i Г, то из формулы (П1,64а) следует, что и зависимости In р от 1/Г при постоянной Г (изостеры адсорбции) практически линейны. Это обычно облегчает [c.140]

    В табл. Х,9 приведены рассчитанные значептш потенциальной энергии Ф(, взаимодействия молекул н-алканов с базисной гранью графита в основном потенциальном минимуме, изменения внутренней энергии при адсорбции —Шу и разности Фо — ДС/1. В случае молекул н-алканов С4—Се, образующих поворотные изомеры, в таблице приведены значения Фо для транс-поворотных изомеров. Значения Ф с точностью до нулевой энергии адсорбированных молекул равны — ДЕ/х лишь при О К. Как видно из таблицы, значения ДС/1 близки к значениям Фо только для наиболее легких молекул и при низких температурах. Для более тяжелых молекул при высоких температурах значения АС/1 на 5—15 кДж/моль (10—30%) меньше значений Фо, и эта разность быстро растет с ростом темпера- [c.323]

    Статистические выражения для разностей изменений внутренних энергий, энтропий и теплоемкостей при адсорбции изотопных молекул, обусловленных квантовостатистическим эффектом и эффектом нулевой энергии, можно получить, вводя статистические выражения [c.357]

    Аи — изменение внутренней энергии при адсорбции газа ДС/я — пзмененпе поверхностной внутренней энергии при адсорбции газа, отнесенное к единице площади поверхности д77 — дифференциальное мольное изменение внутренней энергии адсорбата при адсорбщш газа [c.375]

    Аи — квантовомехапическая поправка к квазикласспч кому изменению внутренней энергии прп адсорбции газа АЦу 12 — потенциальная энергия межмолекулярного взаимодействия двух молекул [c.375]

    Где Аа 7г и АаЗ — изменения внутренней энергии и тепловой Части энтропии при адсорбции (при сохранении свободных колебаний и вращения молекул в адсорбционной фазе) (/, и — соответственно молярная доля компонента в адсорбционном мономолекулярном слое и в равновесном жидком растворе. Легко видеть, что уравнение изотермы адсорбции, полученное Эвереттом, имеет аналогичную структуру с уравнением равновесия пара над двухкомпонентной жидкостью [c.100]

    При средних температурах колебательные состояния молекул достаточно разделены между собой и поэтому не вносят существенного вклада в энтропию и энергию малых молекул. Однако при высоких температурах изменения внутренней энергии и энтропии молекул могут обусловливаться изменениями колебательных степеней свободы при адсорбции. В то же время ясно, что даже при физической адсорбции молекулы адсорбата на поверхности должны быть поляризованы (см. гл. VI, разд. VI-3B), К еще более заметным изменениям энергетическо- [c.426]


Смотреть страницы где упоминается термин Изменение внутренней энергии адсорбции: [c.193]    [c.195]    [c.196]    [c.145]    [c.183]    [c.205]    [c.106]    [c.161]   
Адсорбция газов и паров на однородных поверхностях (1975) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция внутренняя

Адсорбция энергия

Внутренняя энергия изменение

Энергия адсорбции внутренняя

Энергия внутренняя



© 2025 chem21.info Реклама на сайте