Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия малых молекул

    Малая скорость взаимодействия водорода с кислородом при низких температурах обусловлена высокой энергией активации этой реакции. Молекулы водорода и кислорода очень прочны любое столкновение между ними при комнатной температуре оказывается неэффективным. Лишь при повышенных температурах, когда кинетическая энергия сталкивающихся молекул делается большой, некоторые соударения молекул становятся эффективными и приводят к образованию активных центров. [c.346]


    При рассмотрении возможных структур малых кластеров возникает вопрос о том, что выгоднее иметь как можно больше водородных связей, но плохих , искривленных, и углы 0 -0- - О, сильно отличающиеся от тетраэдрических, или же меньше водородных связей, но хороших , прямолинейных и с углами между ними, близкими к 109°. Ответ на этот вопрос может быть различным в разных конкретных случаях, но для его получения необходимо очень точно знать зависимость энергии взаимодействия молекул от их взаимного расположения. Современные методы редко достигают нужной для этого точности. [c.135]

    Вторым фактором является энергия сталкивающихся молекул. В простейших теориях она характеризуется только как относительная скорость двух молекул при столкновении. Если относительная скорость двух молекул при столкновении мала, промежуточное состояние скорее всего обратится в исходные молекулы. Медленно движущаяся молекула воды просто оттолкнется от молекулы тиоацетамида, не причинив ей никакого вреда. В отличие от этого молекула воды, сильно ударяющаяся о молекулу тиоацетамида, имеет больше шансов отщепить от нее атом серы, в результате чего образуется ацетамид и НзЗ. Можно построить график зависимости вероятности реакции от скорости сближения двух молекул вдоль линии, соединяющей их центры. [c.354]

    Процесс, описываемый уравнением (16.3), наиболее распространен и наиболее важен в масс-спектрометрии. Он реализуется в том случае, если энергия бомбардирующего электрона равна или вьппе энергии ионизации молекулы (7—15 эВ). Если энергия бомбардирующего электрона равна потенциалу ионизации, то вся она должна быть передана молекуле, чтобы удалить из нее электрон. Вероятность такого события мала. [c.317]

    Заметим, что вследствие сравнительно большого теплового эффекта процесса Hg -Ь Н2 = Н П - Н (16,3 ккал) и сравнительно малой энергии диссоциации молекулы ПgH (8,5 ккал) образующаяся в этом процессе молекула HgH имеет большую вероятность распасться. Поэтому можно считать, что оба возможных пути вторичного процесса сенсибилизированной ртутью диссоциации водорода п конечном счете ведут к распаду молекулы На на два свободных атома. [c.167]

    Смещение стоксовой линии V — = kE "l h дает величину А ", т. е. сведения об уровнях энергии исследуемых молекул. Разности вращательных и колебательных уровней молекул малы, а кванты соответствующих переходов лежат в МВ- и ИК-областях спектра поглощения. Явление КР позволяет находить те же разно- [c.146]

    Подробно динамический анализ статистического поведения молекулярных систем проведен в работах [330, 334]. Степень эргодичности многоатомной молекулы характеризуется спектрами автокорреляционных функций обобщенных импульсов нормальных колебаний, получаемых при расчете классических траекторий. Площадь спектра определяет энергию данной нормальной моды, поэтому по виду спектра во времени можно охарактеризовать процессы перераспределения энергии внутри молекулы. При малых энергиях молекула ведет себя как набор слабосвязанных гармонических осцилляторов и спектры состоят из дискретных линий, а при больших энергиях появляются дополнительные линии в спектре и непрерывный фон. [c.105]


    Величина р может быть определена из экспериментальных данных и имеет значения, лежащие в пределах 10" —10 эрз-сж для малых молекул и зависящие от их электронных свойств. Чтобы вычислить энергию взаимодействия между определенными частицами, нужно проинтегрировать уравнение (П.1) по всем элементам объема. Это выполнено для пары одинаковых сфер Гамакером, который получил следующее выражение [c.93]

    Взаимодействие функциональных групп молекул адсорбата с гидроксильными группами поверхности адсорбента увеличивает энергию адсорбции молекул, имеющих дипольные и квадруполь-ные моменты или я-электронные связи, и мало изменяет энергию адсорбции молекул с симметричными электронными оболочками. Следовательно, если удалить с поверхности адсорбента гидроксильные группы, то снизится адсорбция адсорбата, молекулы которого имеют дипольные и квадрупольные моменты или л-электронные связи, и мало изменится активность адсорбента для соединений с симметричными электронными оболочками. [c.107]

    Средняя кинетическая энергия молекул жидкости слишком мала, чтобы все они могли преодолеть силы внутреннего давления и распространиться равномерно по всей емкости, как это было с молекулами газа. Но, согласно закону распределения Максвелла, в жидкости всегда присутствует некоторое число молекул с большой энергией ( горячие молекулы), которые способны преодолеть силы внутреннего давления и покинуть объем жидкости — вырваться в пространство над ее поверхностью, т. е. испариться. В то же время в паре над поверхностью жидкости присутствуют молекулы с небольшой энергией ( холодные молекулы), которые захватываются жидкостью — происходит конденсация. [c.27]

    Вследствие упругих соударений молекул газа между собой, а также о стенку сосуда они постоянно меняют скорость и направление движения. В соответствии с теоремой Максвелла в течение некоторого промежутка времени все молекулы независимо от их массы имеют кинетическую энергию, мало отличающуюся от среднего значения (закон равномерного распределения по энергиям). Суммарное воздействие всех молекул на стенку проявляется как давление газа. [c.18]

    Представления о том, что в ходе химической реакции система должна преодолеть энергетический барьер и что лишь некоторые активные молекулы могут вступать в химическое взаимодействие, подтверждаются рядом опытных фактов. Возможность протекания химических реакций как в прямом, так и обратном направлении вполне согласуется с существованием энергетического барьера и трудно объясняется простым переходом непосредственно с энергетического уровня исходных веществ на уровень продуктов реакции (см. рис. 15.1, пунктирная линия). Существование реакций, резко отличающихся друг от друга по своим скоростям, можно объяснить различиями в величине энергетического барьера. В случае очень большой энергии активации будет очень мало молекул, способных преодолеть энергетический барьер, и скорость реакции должна быть незначительной. Очень медленные реакции объясняются тем, что не все столкновения между молекулами реагентов ведут к взаимодействию. Подсчеты показывают, что если все столкновения молекул были бы актив- [c.277]

    Высокая реакционная способность свободного фтора обусловлена сравнительно малой энергией связи молекулы F2, если учесть, что энергия диссоциации молекулы фтора р25=г2р (ДЯ=151 кДж/моль), [c.145]

    Поверхностная активность органических веществ на границе раствор/воздух определяется только эффектом выжимания, который в свою очередь при малых значениях Асг зависит от соотношения энергий взаимодействия молекул органического вещества с молекулами растворителя и молекул растворителя друг с другом. При увеличении До растет степень заполнения поверхности 9 адсорбатом и в поверхностную активность вносит вклад также [c.39]

    Идеальный газ. Модель идеального газа рассматривает молекулы как упругие шарики, между которыми отсутствуют силы притяжения и которые при столкновении ведут себя как идеально упругие тела (суммарная кинетическая энергия сталкивающихся молекул не меняется в результате столкновения). Занимаемый ими объем пренебрежимо мал по сравнению с объемом газа. [c.56]

    В газовой смеси существует распределение числа молекул по значениям их энергии по закону Максвелла — Больцмана. В реакции участвуют молекулы, энергия которых превышает некоторую величину, — активные молекулы. Следует различать два случая а) скорость реакции сравнительно мала, а потому убыль числа активных молекул успевает компенсироваться соударениями молекул. Такие реакции стационарны относительно максвелл-больцмановского распределения. Здесь это распределение не нарушается реакцией, и кинетическая энергия сталкивающихся молекул является единственным источником энергии активации б) для поддержания реакций, не стационарных относительно максвелл-больцмановского рас- [c.255]


    Особый интерес представляет молекула СО — самая прочная из всех двухатомных молекул энергия ее связи на 130 кДж превышает энергию связи молекулы азота. Электрический момент диполя молекулы очень мал и равен 0,4 10"3 Кл м. Это объясняется тем, что большая часть электронов находится на связывающих орбиталях, расположенных ближе к ядру атома кислорода, компенсируя его избыточный заряд [c.191]

    Рассмотрим два атома, ядра которых находятся на расстоянии г друг от друга. Выясним, как изменяется энергия такой системы при изменении г. Удобно считать нулевой потенциальную энергию для состояния, когда атомы находятся на бесконечно большом расстоянии друг от друга и не взаимодействуют между собой. Если атомы способны соединяться в молекулу, то при уменьшении расстояния между ними начинают действовать силы притяжения и энергия системы понижается. Это понижение продолжается до некоторого расстояния /-д.. При дальнейшем уменьшении г энергия начинает возрастать, что обусловлено действием сил отталкивания, которые имеют значительную величину при малых расстояниях между атомами. Таким образом, зависимость энергии от г выражается кривой, имеющей минимум. На рис. 65 представлена кривая энергии для молекулы водорода. [c.149]

    В жидком состоянии энергия взаимодействия молекул соизмерима с энергией тепловых колебаний, поэтому они могут перемещаться, вращаться и колебатьсй. Сжимаемость жидкостей мала, плотность их близка к плотности твердого тела, но более заметно меняется с температурой. Внутреннее строение жидкостей выяснено только в самых общих чертах. Оно более сложное, чем строение газов и кристаллов. Сохраняя отдельные черты указанных состояний, жидкости обладают своими характерными особенностями и прежде всего текучестью. Подобно кристаллам, жидкости сохраняют свой объем, имеют свободную поверхность, обладают определенной прочностью на разрыв и т. д. С другой стороны, жидкости принимают форму сосуда, в котором находятся, что сближает жидкое и газообразное состояния. Принципиальная возможность непрерывного перехода жидкости в газ также свидетельствует о близости жидкого и газообразного состояний. [c.135]

    При средних температурах колебательные состояния молекул достаточно разделены между собой и поэтому не вносят существенного вклада в энтропию и энергию малых молекул. Однако при высоких температурах изменения внутренней энергии и энтропии молекул могут обусловливаться изменениями колебательных степеней свободы при адсорбции. В то же время ясно, что даже при физической адсорбции молекулы адсорбата на поверхности должны быть поляризованы (см. гл. VI, разд. VI-3B), К еще более заметным изменениям энергетическо- [c.426]

    Ошибочно утверждать, что малые молекулы системы обмениваются свободной энергией в особой части цикла преобразования. Изменения свободной энергии малых молекул и фермента неразделимы в индивидуальных переходах. Они могут быть идентифицированы только при рассмотрении полнога цикла. [c.87]

    Выше было показано (см. стр. 499), какую важную роль играют гидроксильные группы на поверхности окислов в отношении адсорбции молекул, имеющих дипольиые и квадрупольные моменты или зг-электронные связи. Поэтому увеличение концентрации гидроксильных и других активных функциональных групп на поверхности адсорбента (гидратация поверхности окислов, окисление саж) увеличивает энергию адсорбции таких молекул, мало изменяя энергию адсорбции молекул с более симметричными электронными оболочками (благородные газы, ССи, насыщенные углеводороды). Наоборот, удаление таких активных функциональных групп (дегидроксилирование поверхности окислов, графитированне саж) снижает адсорбцию молекул, имеющих дипольиые к каад-рупольные моменты или и-электронные связи, мало изменяя адсорбцию молекул с более симметричными электронными оболочками. [c.503]

    Если провести математические операции, выражаемые словами скомбинируем две атомные орбитали так, чтобы получить разрыхляющую и связывающие молекулярные орбитали , то обнаружится, что две такие атомные орбитали должны обладать достаточно близкими энергиями. В молекуле каждая из двух молекулярных орбиталей содержит 50%-ный вклад от Ь-орбитали каждого атома водорода. В противоположность этому если в молекуле АВ скомбинировать орбиталь атома А, обладающую очень высокой энергией, и орбиталь атома В с довольно низкой энергией, то математические выкладки покажут, что разрыхляющая молекулярная орбиталь представляет собой почти чистую исходную орбиталь атома А, а связывающая орбиталь - почти чистую исходную орбиталь атома В. Следовательно, пара электронов на такой связывающей орбитали в сущности находится вовсе не на настоящей ковалентной связывающей орбитали. На самом деле речь идет о неподеленной паре электронов на атомной орбитали атома В. Взаимодействие атомных орбиталей двух атомов с больщим различием в энергиях пренебрежимо мало. На примере молекулы НР мы увидим, что это означает, если принять во внимание частично ионный характер связи. [c.532]

    На этой стадии высвобождается мало энергии. Ее главная цель заключается в превращении любой пищи в стандартный набор химических веществ и подготовке к более эффективным стадиям получения энергии. На второй стадии, называемой циклом лимонной кислоты, пировиноградная кислота окисляется до СО 2, а атомы водорода от пировиноградной кислоты переходят к молекулам-переносчикам НАД (никот инамидадениндинуклеотид) и ФАД (флавинадениндинуклеотид). На этой стадии тоже происходит запасание лишь очень небольшого количества свободной энергии в молекулах АТФ. Главной целью этой стадии является разделение большой свободной энергии (1142 кДж-моль ), заключенной в пировиноградной кислоте, на четыре меньшие и легче используемые части (приблизительно по 220 кДж моль ), которые содержатся в 4 молях восстановленных молекул, переносящих энергию. На третьей стадии процесса, называемой дыхательной цепью, происходит использование этих восстановленных молекул-переносчиков. Они повторно окисляются, а водородные атомы, полученные при окислении, используются для восстановления О2 в воду при этом происходит запасание выделившейся свободной энергии в синтезируемых молекулах АТФ. [c.326]

    В начальном состоянии (A Aj Ч- Ад) расстояние Tj мало влияет на потенциальную энергию системы в целом и Е практически равно потенциальной энергии молекулы AiAj. Аналогично в конечном состоянии (А + AjAg) потенциальная энергия системы практически определяется энергией связи молекулы AjAg, что можно условно представить в виде схемы [c.69]

    Для систем с не очень большим числом электронов в расчетах с расширенным многоэкспоненциальным базисом АО ЕохФ составляет 99—99,9% Еэл- Однако радоваться этому обстоятельству приходится не всегда, ибо, несмотря на большую относительную точность расчета Еохф, энергия диссоциации молекулы (Ое) определяется в ограниченном методе Хартри — Фока с большой абсолютной ошибкой (вплоть до 200% от истинного значения), а иногда и с неверным знаком (как, например, для молекулы з). Это неудивительно, поскольку энергия диссоциации (энергия связи)—наименее удобная для квантовохимического расчета величина. Ведь она получается в виде малой разности двух больших величин — полной энергии молекулы и полной энергии исходных атомов (или фрагментов). [c.186]

    Энергия перехода молекулы этилена в первое синглетное С стояние близка к 640 кДж/моль для других олефинов она нескол ко ниже. Следовательно, возбуждение молекулы олефина пёрев дет ее на относительно высокий энергетический уровень. Энерп перехода этилена из основного в первое триплетное состоян составлят 344 кДж/моль для других олефинов эта энергия ниж Следует также отметить, что время жизни синглетных состоят (10 Ч-10 с) значительно ниже времени жизни триплетных с стояний. Малое время жизни синглетов исключает и химичесю изменение молекулы в этом состоянии. [c.66]

    Исключительная химическая активность фтора обусловлена, с одной стороны, большой прочностью образуемых им связей, так, энергия связи (Н—Р) == 566, (51—Р)= 582 кДж/моль, с другой стороны, низкой энергией связи в молекуле Ра [ (Р—Р) = 151 кДж/моль, ср. для СЬ = 238 кДж/моль]. Большая энергия связей Э-—Р является следствием значительной электроотрицательности фтора и малого размера его атома. Низкое значение энергии связи в молекуле Ра, по-видимому, объясняется сильным отталкиванием электронных пар,, находящихся на л-орбиталях, обусловленным малой длиной связи Р—Р. Благодаря малой энергии связи молекулы фтора легко диссоциируют на атомы и энергия активации реакций с элементным фтором обычно невелика, поэтому процессы с участием Ра протекают очень быстро. Известно много прочных фторндных комплексов ([Вр4] , [81Рб] ", [А1Рб] и др.). Большое значение АО/ обусловливает малую реакционную способность координационно насыщенных соединений фтора (5Рб, Ср4, перфторалканы и др.). [c.469]

    Для идеального газа силы взаимного притяжения между моле-1<улами равны нулю, да и для реальных газов в обычных условиях они очень малы. Поэтому можно считать, что вся теплота расходуется на увеличение энергии самих молекул, т, е. на увеличение энергии поступательного и вращательного движения молекулы в целом и колебательного движения содержащихся в ней атомов и атомных групп. (При очень высоких температурах к этому присоединяется и переход электронов на более высокие энергетические уровни и даже отрыв их от атома, но, ограничиваясь здесь областью обычных температур, мы можем этот расход теилоты не принимать во внимание.) [c.103]

    Коксообразование идет по реакции второго порядка по концентрации асфальтенов в растворе. Энергия активации в этом случае близка нулю, так как является, по существу, константой скорости диффузии ( 1 5 ккал/моль), — константа скорости выделения ассоциатов из раствора —очень мало зависит от температуры ( 2 0), а энергия активации Е- распада ассоциатов асфальтенов на дискретные молекулы, определяемая силами Ван-дер-Ваальса между молекулами асфальтенов (точнее, разностью энергий взанмодействня молекул асфальтенов между собой и молекулами растворителя), также невелика (видимо, 2—5 ккал/моль). Прн дальнейшем повышении температуры растворяющая способность растворителя по отношению к асфальтенам понижается настолько, что асфальтены с большой скоростью выделяются из раствора в виде микрокапель второй жидкой фазы и образование кокса происходит в основном в результате закоксрвывания этих [c.121]

    Образование новой фазы должно начинаться с появления устойчивых зародышей, размер которых превышает критический Гкр. Когда зародыш очень мал, то значительная доля его молекул находится на поверхности. В этом случае новая фаза имеет высокое отношение поверхности к объему. Молекулы, расположенные на поверхности, обладают большим запасом внутренней энергии, чем молекулы в объеме. Поэтому из-за высокой поверхностной энергии такой зародыш неустойчив. И лишь последующее увеличение размеров зародышей выше Гкр дела- ет их устойчивыми, они становят- ся центрами кристаллизации. ь [c.219]

    Следует заметить, что адсорбция из раствора определяется не полным значением потенциальной энергии системы молекула адсорбтива — адсорбент, как это имеет место при адсорбции газа при малом давлении, а разностью потенциальных энергий молекулы адсорбтива. по отношению к адсорбенту и по отношению к растворителю. Поэтому теплота адсорбции адсор.бтива из рае твора обычно в несколько раз меньше его адсорбции на том же адсорбенте из газовой фазы. [c.143]

    Обмен колебательной энергией (процесс V — V). При столкновениях молекул наряду с процессами превращения колебательной энергии в поступательную и вращательную возможна передача колебательной энергии от одной молекулы к другой межмолеку-лярная передача колебательной энергии) или перераспределение колебательной энергии внутри одной молекулы (внутримолекулярный обмен колебательной энергии). Если суммарное изменение колебательной энергии сталкивающихся молекул мало, то передачу энергии называют квазирезонансной. Вероятность передачи колебательного кванта от одной молекулы к другой зависит от конкуренции короткодействующих и дальнодействующих сил, поэтому от температуры зависит немонотонно  [c.61]

    Так как обычно стерический фактор мало отличается от единицы, то скорость бимолекулярной реакции определяется в основном величиной энергии активации. Поэтому можно было бы ожидать, что такие реакции, для которых энергия активации близка к нулю (например, реакции рекомбинации атомов), должны протекать с большими скоростями. Однако в действительности такие реакции протекают со скоростями, значительно меньшими, чем вычисляемые по уравнению (XVI.22). Это противоречие объясняется тем, что вновь образовавшиеся молекулы обладают запасом энергии, представляющим собой сумму кинетической энергии столкнувшихся атомов и теплоты реакции. Если такая молекула несможет освободиться от избытка энергии сразу послесоударения, то она вновь диссоциирует на атомы. Из-за закона сохранения импульса этот избыток энергии не может превратиться в кинетическую энергию образовавшейся молекулы. [c.331]

    Метод ВС, построенный на идее образования электронных пар, мало эффективен при рассмотрении молекул с нечетным числом электронов. Так, связь в молекулярном ионе Нз+ осуществляется одним электроном и обладает большой прочностью ее энергия превышает энергию диссоциации молекул галогегюв (Г2). Неспаренные электроны содержатся также в свободных радикалах (СвНб) )С-, НзС , H2N , N и др. Они обладают высокой реакционной способностью, и протекание ряда реакций невозможно без их участия. [c.112]

    Первый случай соответствует связыванию близлежащих молекул воды во втором случае молекулы воды вокруг иона становятся более подвин ными. Последнее явление и названо Самойловым отрицательной гидратацией. Он считает, что представления об обмене в гидратной оболочке не противоречат тому факту, что гидратация ионов всегда сопровождается выделением большого количества энергии. По его мнению, большой эффект соответствует дальнейшей гидратации иона, хотя, как будет показано ниже, почти 70% энергии выделяется при гидратации за счет ион-дипольного взаимодействия. Самойлов считает, что установление отрицательной гидратации приводит к пебходимости отказаться от представлений о связывании молекул воды ионами. Он подчеркивает, что обмен молекул воды зависит не от полной гидратации, составляющей десятки килокалорий на моль воды, и полной энергии взаимодействия молекул воды со, также имеющей порядок (10 ккал/моль) 4186 10 Дж/моль, а изменения энергии на малых расстояниях Акя Аса, имеющих порядок (1 ккал/моль) 418 10 Дж/моль. За счет более быстрого падения энергии взаимодействия молекул при Я > со может иметь место соотношение Ак < Ао). Основываясь на развитых представлениях, Самойлов объясняет увеличение активности воды в растворах солей, ионы которых имеют отрицательную гидратацию, и рассматривает связь подвижности ионов с коэффициентами самодиффузии. [c.151]

    Константа равновесия в таких реакциях прогрессивно увеличивается с ростом длины цепи олигомера. Взаимодействие п малых молекул с полимерной цепью может дать выигрыш энергии пАНзв, где АНзв — энтальпия образования одной связи, и проигрыш энтропии пАЗав- Если цепь олигомера из п звеньев взаимодействует с полимерной молекулой, то выигрыш анергии в первом приближении оказывается таким же, пАНзв, а проигрыш энтропии меньше, так как звенья уже связаны в цепь. Это и приводит к смещению равновесия в сторону образования поликомплекса. [c.126]

    Существуют и другие затруднения для осуществления актов взаимодействия. Часто в результате взаимодействия образуются возбужденные молекулы, для стабилизации которых необходимо сбросить избыточную энергию, иначе молекула распадется. В этом случае необходимо третье тело (которым может быть и стенка реакционного сосуда). Возможны и квантовые препятствия осуществлению реакции, когдэ течение процесса связано с изменением электронного состояния, а вероятность некоторых электронных переходов мала. [c.147]

    Наоборот, если энергия взаимодействия молекул А и А или В и В больше, чем, А и В, то одинаковые молекулы одного и того же компонента будут связываться между собой и растворимость А в В понизится. Это часто наблюдается при значительной полярности одного из компонентов раствора, например, полярный хлороводорбд мало растворим в неполярном бензоле. Этим же объясняется небольшая растворимость неполярных и малополярных веществ в полярном растворителе, например в воде. Молекулы Н]0 в жидкой воде связаны друг с другом сильными водородными связями, поэтому притяжение неполярных молекул к [c.251]

    Благодаря малой энергии связи молекулы фтора легко диссоциируют на атомы и энергия активации реакций с э.лементным фтором обычно невелика, поэтому процессы с участием Fj протекают очень быстро. Известно много прочных фто )идных комплексов (IBF l, SIP 1 , Л1Рб1 и др). Большое значение Gf обусловливает малую реакционную способность координационно насыщенных соединений фтора (SPe, СРч, перфторалкамы и др.). [c.457]

    Сродство к электрону определить экспериментально значительно труднее, чем ионизационный потенциал, и оно было определено только для наиболее электроотрицательных элементов. Прямое определение сродства к электрону возможно , но чаще его определяют из цикла Борна—Габера, как это показано в гл. 5. Величины сродства к электрону для некоторых элементов при ведены в табл. 4-8. Неожиданно малая величина сродства к электрону у фтора (табл. 4-8) может быть объяснена отталкиванием электронов в сравнительно плотно заполненном 2р-подуровне На основании приведенных в таблице величин можно предполо жить, что хлор должен быть более сильным окислителем, чем фтор, так как при присоединении электрона атомом хлора энергии выделяется больше. Но зато когда молекула фтора диссоциирует на атомы, то затрачивается меньше энергии (37,7 ккал/моль), чем при диссоциации молекулы хлора (57 ккал/моль). Малая энергия диссоциации молекулы фтора частично может быть объяснена отталкиванием несвязывающих электронов, но обычно считают, [c.121]

    Следует, указать на два обстоятельства, позволяющие применять для ориентировки правило сохранения орбитальной симметрии. Во-первых, точные волновые функции неизвестны, и приходится использовать вместо них приближенные функции МО ЛКАО. Однако последние правильно отражают наиболее важное здесь свойство точных волновых функций — их симметрию. Во-вторых, для ориентировочных оценок можно в волновой функции (217.1) вместо бесконечной суммы возбужденных состояний ограничиться лишь первым из них, вклад которого наиболее существен. Таким образом, при качественных оценках можно исходить из волновых функций основного и первого возбужденного состояний реагирующей системы. Чтобы энергетический барьер реакции был невысок, первое возбужденное состояние системы должно иметь ту же симметрию, что и основное, н не очень сильно, отличаться от него по энергии. Возбуждение молекулы из основного в первое возбуаденное состояние представляет собой переход электрона с высшей занятой молекулярной орбитали (ВЗМО) на низшую свободную молекулярную орбиталь (НСМО). Поэтому симметрия и разность энергий именно этих двух орбиталей, НСМО и ВЗМО, играют первостепенную роль при качественных оценках возможности протекания реакции через то или иное переходное состояние. ВЗМО и НСМО должны в благоприятном случае иметь одинаковую си (метрию и мало отличаться по энергии. На это впервые указал в 1952 г. Фукуи [43]. [c.143]

    Обычно при первичной оценке химических реакций в полимерах руководствуются так называемым принципом равной реакционной способности (принцип Флори), согласно которому реакционноспо-собность функциональной группы не зависит от того, присоединена ли она к полимерной цепи любой длины или находится в составе малой молекулы низкомолекулярного соединения. Качественно этот принцип соблюдается, однако при детальном, особенно количественном, сравнении отмечены существенные отличия в реакционной способности низко- и выскомолекулярных соединений аналогичной химической природы. Так, если сопоставить энергию отрыва атома водорода в ряду насыщенных углеводородов, то в сравни- [c.215]


Смотреть страницы где упоминается термин Энергия малых молекул: [c.184]    [c.226]    [c.24]    [c.137]    [c.146]    [c.52]    [c.287]   
Молекулярная биология клетки Том5 (1987) -- [ c.61 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия молекул



© 2024 chem21.info Реклама на сайте