Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа адсорбционного равновесия, константа Генри

    Константа адсорбционного равновесия, константа Генри [c.133]

    Коэффициент Ь является константой адсорбционного равновесия и выражается формулой Ь = где л — теплота адсорбции. Из уравнения (I. 10) следует, что при 6С < 1 адсорбция следует закону Генри, т. е. 0 ЬС. Прн ЬС 1 происходит насыщение поверхности. [c.22]

    При малых степенях заполнения поверхности адсорбция удовлетворительно аппроксимируется законом Генри и = АГн — константа адсорбционного равновесия (м газа на 1 м поверхности). [c.56]


    Термодинавическое описание адсорбционных систем. Реальная система с поверхностью раздела и система сравнения. Адсорбция как избыточная величина. Уравнения Гиббса для поверхности. Выражение химического потенциала адсорбированного вещества через адсорбцию константа Генри для адсорбционного равновесия, ее определение хроматографическим методом. Изотерма адсорбции, коэффициент активности адсорбированного вещества, поверхностное давление. [c.126]

    При достаточно высоких температурах колонки и малых пробах изотерма адсорбции подчиняется закону Генри с константой адсорбционного равновесия К. Хроматографические пики становятся симметричными, а времена и объемы удерживания, соответствующие максимумам пиков, перестают зависеть от величины пробы. Изучая зависимость их от температуры, можно вычислить изо-стерическую теплоту адсорбции при предельно малом заполнении поверхности. [c.359]

    Статические методы измерения адсорбционных равновесий (изотерм или изостер адсорбции) обладают тем существенным преимуществом, что, используя их, можно очищать поверхность адсорбента в вакууме и как угодно долго дожидаться установления адсорбционного равновесия. Однако эти методы встречают и существенные затруднения. Во-первых, их трудно применить для изучения весьма важной области очень малых (нулевых) заполнений поверхности, когда межмолекулярным взаимодействием адсорбат — адсорбат можно пренебречь. Поэтому для определения такой термодинамической характеристики межмолекулярного взаимодействия адсорбат— адсорбент, как константа Генри, приходится экстраполировать к нулевому заполнению изотермы адсорбции, измеренные при более высоких заполнениях поверхности адсорбента. Эта экстраполяция связана с рядом затруднений. При сравнительно низких температурах, при которых обычно проводятся статические измерения изотерм адсорбции, сильнее сказывается влияние неоднородности поверхности твердого тела. Во-вторых, обычными статическими методами при невысоких температурах можно изучать адсорбцию лишь небольшого количества достаточно летучих. и простых по структуре молекул веществ с небольшой молекулярной массой. В-третьих, применение статических методов, особенно при работе с труднолетучими веществами, требует высокой чистоты этих веществ, так как летучие примеси могут привести к ошиб- [c.156]

    Выше были рассмотрены способы приближенной оценки значений Фо в этих простейших случаях. При подстановке в уравнение (XVHI, 47) они приводят к правильному порядку величины константы адсорбционного равновесия. В области более высоких заполнений поверхности надо, во-первых, учесть различия в моделях локализованной и нелокализованной адсорбции и, во-вторых, ввести в расчет новые суммы состояний, связанные с потенциальной энергией взаимодействия адсорбат—адсорбат. Учет локализации сводится к рассмотрению различных конфигураций на поверхности, т. е. числа способов, которым можно разделить общее число мест на поверхности N, на занятые Ni и свободные N,—Na. Это приводит к появлению в выражении для химического потенциала адсорбата (ХУП, 37) конфигурационного множителя Na N,—Na = 0/1—0 вместо Na. Легко видеть, что вследствие этого вместо уравнения Генри получается уравнение Лэнгмюра. [c.482]


    На рис. 8.8 белыми точками представлена изотерма адсорбции пара -гексана на ГТС при комнатной температуре, полученная обычным вакуумным статическим методом. В области малых концентраций (давлений) гексана в газовой фазе эта изотерма круто поднимается, причем первые более или менее надежно измеренные точки дают величины Г не менее 0,2 мкмоль/м , что соответствует заполнению гексаном уже более 5—7% поверхности. Определить отсюда ход изотермы адсорбции в области более низких заполнений и константу Генри невозможно из-за ненадежности экстраполяции. Черными точками представлена та же изотерма адсорбции в области низких и средних заполнений поверхности ГТС, полученная описанным методом достижения адсорбционного равновесия с использованием насыщения газа-носителя паром гексана в криостате (для создания малых его концентраций) и тепловой десорбции для определения малых значений адсорбции. Из рисунка видно, что при этом можно исследовать изотерму адсорб- [c.157]

    Константу Генри адсорбционного равновесия можно определить в благоприятных случаях (при достаточно высоких температурах) и непосредственно. В последнее время приобрели большую важность газохроматографические исследования адсорбции при малых дозах адсорбата, вводимых в практически неадсорбирующийся на данном адсорбенте газ-носитель (см. разд. 1 этой главы и работы [1, 24, 25, 27, 28, 51—53]). Измеряемые времена удерживания адсорбата можно привести к нулевому перепаду давления газа в хроматографической колонне [25, 54]. Допущение о достижении равновесия в колонне при достаточно высоких ее температурах оправдывается, особенно для не очень больших энергий адсорбции, даже в случае тонкопористых адсорбентов [24, 25, 55, 56]. При этом измеряемую зависимость времени удерживания от концентрации адсорбата в газе-носителе, т. е. выходную кривую при использовании фронтальной хроматографии или растянутый край хроматографического пика в элюционной хроматографии, можно пересчитать в изотерму адсорбции [24, 25, 55, 56]. [c.109]

    Коэффициент поверхностной диффузии является величиной порядка 10- —10 см2/с. Если количество адсорбированного вещества определяется изотермой Генри а = КС (К—константа адсорбционного равновесия), то уравнение (III. 16) можно преобразовать  [c.63]

    А. Г. Безус, Г. И. Березин (Московский государственный университет им. М. В. Ломоносова Институт физической химии АН СССР, Москва). Примененный нами метод расчета для определения зависимости адсорбции от давления и температуры основан на использовании простых уравнений адсорбционного равновесия, учитывающих не только взаимодействия адсорбат—адсорбент,но и взаимодействия адсорбат—адсорбат. Уравнения (3), (4) и (14) (стр. 369, 372) позволяют описать изотермы адсорбции не только на кристаллических непористых, но и на кристаллических пористых адсорбентах. Эти уравнения содержат несколько констант, однако все они имеют ясный физический смысл, и их расчет, особенно при использовании ЭВМ, не представляет большого труда. Все примененные уравнения при малых степенях заполнения поверхности превращаются в уравнение Генри, что отвечает требованиям молекулярной статистики. [c.433]

    Параметры хроматографического пика (выходной кривой) содержат многостороннюю информацию о свойствах исследуемого вещества и адсорбента и их взаимодействии, причем связь между значениями исследуемых величин и параметрами пика в большинстве случаев легко устанавливается. Например, из удерживаемых объемов для малых (нулевых) доз можно определить константы Генри адсорбционного равновесия, а из удерживаемых объемов для больших доз — изотермы адсорбции и коэффициенты активности адсорбированного вещества. Из зависимостей параметров удерживания от температуры можно определить изменения внутренней энергии или энтальпии при адсорбции и другие термодинамические характеристики адсорбции. [c.38]

    Решение задачи оптимизации использования молекулярных взаимодействий компонентов смеси путем выбора соответствующей неподвижной фазы (адсорбента или жидкости, молекулярного сита) может быть найдено лишь на основе теории межмолекулярных взаимодействий в газах и жидкостях и между газами и жидкостями и твердым адсорбентом. Эта теория основывается на результатах изучения геометрии и химической природы молекул газа, молекул жидкости и поверхности твердого тела. Она представляет собою молекулярную теорию, поскольку ее задачей в области хроматографии является объяснение связи с молекулярными параметрами и вычисление термодинамических констант адсорбционного или распределительного равновесия (например, констант Генри для нулевых проб), определяющих селективность. Отсюда ясно значение молекулярно-статистических расчетов для развития молекулярных теорий адсорбции или растворения п их приложений к хроматографии, поскольку именно статистическая термодинамика указывает правильную количественную связь констант термодинамического равновесия с нотенциальпыми функциями межмолекуляриого взаимодействия. Однако по мере усложнения адсорбционной системы использование статистической термодинамики для количественных расчетов удерн иваемых объемов встречает затруднения, особенно в случае специфических взаимодействий и неоднородных поверхностей. Вместе с тем увеличение энергии и характеристичности взаимодействия влечет за собой возможность получения новой важной информации о специфическом молекулярном взаимодействии при использовании комплекса спектроскопических методов. Это помогает наполнить даваемые хроматографическими и термодинамическими исследованиями полуэмпи-рические и феноменологические связи между различными параметрами эвристическим содер/канием в смысле возможного приближения к молекулярным основам взаимодействия и селективности. Сюда относится,, в частности, использование регулирования специфхмеских взаимодействий, в частности электростатических взаимодействий динольных и квад-рупольных молекул с поверхностями ионных кристаллов и с поверхностными функциональными группами, использование и регулирование водородной связи и вообще взаимодействий донорно-акценторного типа и процессов комплексообразования. [c.34]


    Если опыты проводятся при условиях, в достаточной степени соответствующих предположениям, для которых была выведена теория статистических моментов, то при анализе экспериментальных результатов на основании выведенных теоретических соотношений можно получить ценные сведения о константах, характеризующих равновесие и кинетику адсорбционного процесса. Так, например, при помощи найденного первого момента можно сравнительно просто определить константу адсорбционного равновесия (коэффициент Генри) в широкой области температур. При этом нет необходимости ограничиваться только простыми системами можно получить эту константу для данного адсорбата, если он находится в смеси с другими. Коэффициент Генри можно далее анализировать обычными методами для получения дальнейшей информации. Наши [c.451]

    Эти константы имеют ясный термодинамический смысл. Это либо константы равновесия реакции двумерной ассоциации с образованием на поверхности кратных комплексов [5], либо это константы взаимодействия в уравнении состояния двумерного слоя, нанример константы а.2 и Ьд двумерного уравнения состояния Ван-дер-Ваальса [6—9]. При адсорбции на неоднородной поверхности эти константы отражают как взаимодействие адсорбат—адсорбат, так и неравноценность различных мест на поверхности [10—12]. Для всех этих констант, как и для константы Генри, может быть найдена зависимость от температуры. В этом случае можно получить уравнение вида / (а, р, Т) = О, которое позволяет найти зависимость величины адсорбции а не только от р, но и от Г [13—15]. Первая производная / р, Т) этой функции по температуре при постоянной а дает зависимость Q от занолнения, а вторая производная fa р, Т) — зависимость теплоемкости от занолнения. Таким образом, применение приближенных уравнений адсорбционного равновесия дает возможность рассчитать основные термодинамические характеристики адсорбции в широкой области заполнений первого слоя, а в благоприятных случаях — и при переходе к полимолекулярной адсорбции. В дальнейшем вычисления основных адсорбционных характеристик с помощью функции / (а, р, Г) = О и ее производных проводятся в нулевом прибли кении, т. е. при допущении независимости Q от Т. [c.367]

    Мы рассматривали до сих пор область средних заполнений поверхности, в которой должны наблюдаться резкие отличия от кинетики в идеальном адсорбированном слое. Такие различия не имеют места в крайних областях — области Генри и области насыщений. В этих случаях, как нетрудно убедиться, кинетические уравнения адсорбции и десорбции по форме аналогичны соответствующим уравнениям для идеального адсорбированного слоя, отличаясь только множителями в константах, учитывающих характер неоднородности поверхности. Таким образом, как и для адсорбционного равновесия, независимо от характера неоднородности поверхности, закономерности кинетики адсорбции и десорбции в крайних областях по форме не должны отличаться от закономерностей идеального адсорбированного слоя. [c.115]

    ОПРЕДЕЛЕНИЕ КОНСТАНТЫ ГЕНРИ АДСОРБЦИОННОГО РАВНОВЕСИЯ ИЗ ГАЗОХРОМАТОГРАФИЧЕСКИХ ДАННЫХ [c.41]

    Разнообразные примеры разделения на ГТС молекул раз-, ного геометрического строения, в частности, структурных изомеров, и определенные для них константы Генри адсорбционного равновесия приведены в обзорах [3—5]. Здесь мы ограничимся лишь некоторыми примерами из последних работ. [c.183]

    Такое определение удерживаемого объема находится в соответствии с определением величины адсорбции по Гиббсу [13]. Адсорбцию по Гиббсу, отнесенную к единице площади А поверхности адсорбента, т. е. к Л = 1, обозначают через Г и измеряют в моль/м . В условиях равновесной хроматографии, которые легко реализуются на колонках с непористым неспецифическим адсорбентом ГТС, при небольших перепадах давления удерживаемый объем Va,i представляет собой выраженную через Г константу Генри адсорбционного равновесия [4] (начальный наклон изотермы адсорбции Гиббса)  [c.185]

    Результаты молекулярно-статистических расчетов константы Генри для адсорбционного равновесия при неспецифической адсорбции мало зависят от конкретной формы такой потенциальной функции при соответствующем выборе ее параметров [31, 32]. В таких расчетах Кг при адсорбции на ГТС углеводородов для ф была выбрана форма 6, 8—ехр , соответствующая модели потенциала межмолекулярного взаимодействия Бакингема— Корнера (см. [4])  [c.191]

    Да В большинстве случаев меньше Ом из-за энергии активации диффузии адсорбированных молекул и из-за того, что, оценивая путь диффузии по радиусу зерна, мы пренебрегаем действительной траекторией диффузии по извилистой сети каналов пористой структуры зерна адсорбента. По этой же причине >а меньше истинного значения Оа. Однако это не означает, что диффузион ный поток адсорбированных молекул всегда меньше диффузионного потока молекул, диффундирующих в растворе, заключенном в объеме транспортных пор. Действительно, если энергия адсорбции молекул велика, т. е. веЛика константа адсорбционного равновесия /С , а значит, и коэффициент Генри, то концентрация молекул в адсорбционном пространстве во много раз больше, чем в растворе, заключенном в транспортных порах. В этом случае (Оа/Ом)1 и кинетика адсорбции в основном определяется диффузионным потоком адсорбированных молекул. Если же значение невелико и Оайг/Ьм<1, то в общем массопереносе возрастает доля молекул, переносимых диффузией в растворе, заполняющем транспортные поры зерна адсорбента. При оба диффузионных потока соизмеримы [185, 186]. tpyктypa пористости активных углей представляет собой переплетение пор различных размеров. Если поры различных размеров распределены по объему зерна адсорбента беспорядочно, а потому и равномерно, то при рассмотрении кинетики адсорбции таким зерном можно упрощенно представить его структуру как квазигомогенную (т. е. заменить реальную картину моделью однороднопористого зерна). Если же микропоры и супермикропоры, т. е, основная часть адсорбционного пространства зерна, связаны с транспортными порами и лишь эти последние преимущественно открываются на внешней поверхности зерна, то реальную структуру зерна лучше отражает модель бипористой структуры адсорбента. Наиболее надежным доказательством применимости модели квазигомогенного зерна адсорбента является независимость найденного эффективного коэффициента диффузии от размера зерен, полученных дроблением исходного крупнозернистого материала. [c.203]

    Одной из задач молекулярной теории адсорбции является вычисление физико-хидшческих характеристик (констант адсорбционного равновесия, теплот и энтропий адсорбции, теплоемкости адсорбата) на основании свойств молекулы адсорбата и свойств адсорбента. Эта задача может быть решена методами молекулярной статистики с помощью теории молекулярного взаимодействия лишь в простейших случаях (литературу см. в [1, 2]). Отклонения от предельного закона Генри связаны либо с притя жением адсорбат—адсорбат, либо с отталкиванием адсорбированных моле кул друг от друга или с неоднородностью поверхности адсорбента. Влияние этих факторов пока не охарактеризовано количественно с помощью молекулярной теории. Поэтому представляют теоретический интерес и практическую ценность попытки расчета этих термодинамических функций с помощью приближенных уравнений адсорбционного равновесия [3—12], содержащих константы равновесия для различных вкладов взаимодействий в адсорбционных системах, в частности, для взаимодействия адсорбат— адсорбат. [c.367]

    Таким образом, в условиях равновесной хроматографии и при практически не адсорбирующемся И не сильно сжатом газе-носителе удерживаемый объем малой (нулевой) дозы адсорбата представляет собой константу Генри адсорбционного равновесия. Так как современные детекторы (пламенно-ионизационный, электроноза-хватный, масс-спектрометриче ский) обладают весьма высокой чувствитель-ностью (на уровне пикограммов), метод газовой хроматографии позволяет непосредственно измерить константу Генри. На рис. 7.3 показано, что время удерживания малых доз прак- -- [c.137]

    А. Определение типа изотермы адсорбции. Если ток пика в широком интервале концентраций деполяризатора линейно зависит от концентрации его, можно предположить, что он описывается уравнением изотермы Генри. Из углового коэффициента г р=/(с)-прямой можно рассчитать константу адсорбционного равновесия. Если г р =/(с)-кривая имеет нелинейный характер (изотерма адсорбции Лэнгмюра), то по экспериментальным данным строят кривую и находят концентрацию, при которой ток пика равен половине предельного значения. Пересчитывают ток и концентрацию в безразмерные параметры 0 = 1Угр " и =0/(1—0). Строят график Q = f(g). Значения 0, д приведены ниже. [c.90]

    Для регулирования величин удерживаемых объемов и селективности разделения в методе флюидо-адсорб-ционной хроматографии по сравнению с обычной газо-адсорбционной хроматографией можно использовать две дополнительные возможности выбор природы подвижной фазы и выбор давления. Если вместо практически не адсорбирующегося газа-носителя использовать заметно адсорбирующееся вещество в сверхкритическом состоянии, то адсорбционное равновесие между разделяемыми компонентами и адсорбентом изменится в сторону уменьшения константы Генри этих компонентов. Во-первых, это вызвано тем, что взаимодействие в подвижной фазе между молекулами разделяемых веществ и молекулами флюида (подвижного вещества-носителя) будет способствовать ослаблению взаимодействия разделяемых веществ с адсорбентом, т. е. приведет к повышению летучести разделяемых веществ на данном адсорбенте. Этот эффект может [c.340]

    Структура Молекулярно-статистическая теория ад- Константа Генри молекулы, сорбции при нулевом заполнении адсорбен- адсорбционного структура та и иолуэмпирическая теория межмолеку- равновесия (удер-адсорбента лярных взаимодействий живаемый объем [c.184]

    Адсорбция на однородной плоской поверхности твердого тела при малом (нулевом) ее заполнении весьма чувствительна к геометрии молекул. Молекула адсорбируемого вещества (адсорбата) испытывает действие межмолекулярных сил только с одной стороны — со стороны поверхности иолубесконечного кристалла адсорбента (а не со всех сторон, как в сжатых газах, жидкостях и твердых телах). Поэтому константа Генри адсорбционного равновесия, представляющая одну из термодинамических характеристик межмолекулярного взаимодействия ад- [c.182]

    Если К является константой Генри, то ЛС° характеризует переход адсорбата из стандартного сосгояния в объеме в стандартное состояние его на noeepxiio Tti. Еслн же К является константой квазихимического равновесия в уравнении Ленгмюра, то AG° определяет химическое сродство между адсорбатом и адсорбционными центрами поверхиости адсорбента в соответствии с уравнением (III.12). [c.146]

    Отметим следующее обстоятельство, которое, как нам кажется, является важным для оценки характера пористости для скорости адсорбции. Из приведенных на рис. 56 и 57 кривых, которые имеют удивительное сходство с кривой проницаемости для щели (ср. рис. 12) видно, что скорость переноса органических паров через адсорбционную фазу понижается с увеличением среднего давления и составляет относительно малую долю по сравнению с количеством вещества, которое транспортируется через газовую фазу в макропорах. Для воды, на-лротив, скорость переноса в микропорах возрастает с увеличением давления и заметно превосходит скорость переноса в макропорах. Наблюдаемое на опыте медленное установление сорбционного равновесия в измерениях сорбции паров воды в области высоких относительных давлений следует приписать высоким значениям константы Генри, которая входит в эффективный коэффициент диффузии. [c.151]

    Хроматографическое разделение газов происходит из-за разной величины константы Генри для адсорбционных равновесий этих газов. Вследствие того, что молекулы большинства газов неполярны и поэтому адсорбируются в основном благодаря неспецифическим дисперсионным взаимодействиям (за исключением слабо по.иярных молекул, например СО, и мо.лекул, обладающих значительным квадрупольным моментом, нанример N,), для обеспечения достаточно больших различий в величинах их адсорбции необходимо иснользовать очень тонкоиористые адсорбенты, так как разделение неполярных газов в большей степени определяется величиной удельной поверхности и размерами пор и в меньшей степени химией новерхности адсорбента. Поэтому разделение этих газов в большинстве случаев можно получить как на неспецифических адсорбентах (активированные угли), так и на специфических гидроксилированных (силикагель, алюмогель) [c.145]


Смотреть страницы где упоминается термин Константа адсорбционного равновесия, константа Генри: [c.510]    [c.81]    [c.153]    [c.105]    [c.205]    [c.568]    [c.481]    [c.481]    [c.65]    [c.181]    [c.188]    [c.95]    [c.491]   
Смотреть главы в:

Межмолекулярные взаимодействия в адсорбции и хроматографии -> Константа адсорбционного равновесия, константа Генри




ПОИСК





Смотрите так же термины и статьи:

Генри

Константа Генри

Константа адсорбционного

Константа равновесия

Равновесие адсорбционное

Равновесие константу, Константа равновесия



© 2025 chem21.info Реклама на сайте