Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры, разрушение усталостное

    Усталость обычно выражается количеством циклов деформации, которые образец выдерживает до разрушения. Усталостное разрушение большинства полимеров наступает при напряжениях, значительно меньших предела текучести материала. Это напряжение обычно довольно мало, и образец под действием равного статического напряжения может изгибаться без разрушения неограниченно долго. В этом виде испытаний, так же как и в других случаях, скорость приложения нагрузки играет важную роль, так как влияет на интенсивность рассеивания в теле тепловой энергии. [c.56]


    Биологическая совместимость материалов, относящихся к категории нетоксичных, необходима и является предметом продолжающихся исследований. Поскольку не существует полностью инертных материалов, их пригодность определяется уровнем взаимодействия между имплантатом и окружающими тканями. К другим факторам, важным при выборе материала, относятся механические свойства полимера, например, усталостные свойства, износостойкость химические свойства, такие как устойчивость к разрушению при гидролизе, чувствительность к ферментам и то, как материал реагирует на осаждение белка. [c.439]

    Область II усталостного разрушения характеризуется тем, что период образования зародышей трещин серебра предшествует их росту и появлению медленно, а затем катастрофически быстро растущей трещины. Данный тип усталостного разрушения наблюдается при значениях напряжения, чуть меньших напряжения о,-, при котором непосредственно начинается рост трещины серебра. Зависимость Мр от а значительно более слабая. Это приводит к тому, что при меньших значениях напряжения происходит задержка начала роста трещины серебра, а также понижается скорость медленного роста простой трещины. По-видимому, наклон кривой ( 1,4 МПа на 1 цикл Кр) будет характерен для многих полимеров [142, 153].  [c.294]

    При взаимодействии некоторых полимеров с кислородом наблюдается явление хемилюминесценции. Это позволяет использовать люминесценцию для определения степени механохимических превращений. Метод в 10-100 раз чувствительнее, чем ЭПР. Замечено также, что при циклическом растяжении-сжатии полимеры начинают светиться, причем максимальная люминесценция приходится на момент разрыва. То же происходит и при размоле и усталостном разрушении полимеров. Причиной люминесценции могут быть два процесса рекомбинация заряженных частиц или радикалов и механическое возбуждение звеньев полимерной цепи. Следовательно, люминесценция зависит от природы полимера, наличия добавок и температуры, а ее интенсивность - от газовой среды и давления. [c.413]

    При достаточно больших механических напряжениях течение полимеров обусловливается не только перемещением макромолекул относительно друг друга, но и разрывом цепей и движением образовавшихся радикальных осколков (химическое течение). В результате взаимодействия этих осколков между собой могут возникать структурированные системы. Усиление каучука такими наполнителями, как сажа, тоже связано с механохимическими процессами, происходящими во время смешения этих веществ полученные при этом свободные радикалы взаимодействуют химически с поверхностью частиц сажи. Механохимические процессы лежат в основе явлений утомления и усталостного разрушения полимеров (с. 645). [c.643]


    В близкой связи с процессами старения находятся явления утомления и усталости полимеров. Утомление, наступающее в результате многократной деформации — динамическое утомление или длительного нахождения полимера в напряженном состоянии — статическое утомление, вызывает постепенное изменение свойств материала, называемое усталостью. Эти изменения могут вначале иметь как обратимый, так и необратимый характер, но, накапливаясь, всегда приводят к необратимым явлениям, которые заканчиваются разрушением полимерного образца. Утомляемость чаще всего измеряется числом циклов (ЛГ) деформации, приводящим к разрущению полимерного материала (выносливость) приложенная при этом нагрузка представляет собой усталостную прочность, которая снижается с увеличением N. [c.645]

    Специфика усталостных явлений в полимерах заключается в принципиальной возможности суперпозиции парциальных воздействий параметров среды на кинетику разрушения. Из громадного многообразия внешних факторов в некотором идеализированном случае может остаться только один — температура. [c.157]

    Рассмотренные выше особенности процессов усталостного разрушения значительно усложняют характер воздействия жидкой внешней среды на полимер по сравнению со статическим нагружением. [c.177]

    Таким образом, рассмотренные экспериментальные результаты говорят о чрезвычайной сложности процесса усталостного разрушения полимерных материалов в контакте с жидкостями. Механизм этого процесса обусловлен многими факторами, причем наиболее существенными являются физико-химическая природа жидкой среды и полимера. [c.181]

    Повышение температуры при усталостных испытаниях полимеров согласно представлениям о термофлуктуационном механизме разрушения должно уменьшать долговечность образцов [3]. При испытаниях в жидких средах картина значительно усложняется. В этом случае возможно наложение ряда явлений. [c.181]

    Об особенностях воздействия жидкой среды на полимер при циклических усталостных испытаниях можно судить по зависимости температурного коэффициента или значения энергии активации и процесса разрушения от а (рис. V. 10). [c.184]

    Влияние жидкой химически активной среды на процесс усталостного разрушения в первую очередь должно проявляться в ускорении образования первоначального дефекта. При развитии этих дефектов в субмикротрещины и магистральные разрушающие трещины определяющим кинетическим фактором разрушения может быть поверхностная или объемная диффузия молекул среды к вершине растущей трещины. Это наглядно показано Зуевым для случая разрушения напряженных резин в атмосфере озона [11, с. 163] и нами для разрушения полимеров в жидкостях. [c.185]

    По нашим представлениям для полимерных материалов, имеющих низкие значения поверхностной энергии, фазовый эффект воздействия жидкости может иметь решающее значение в ускорении процессов разрушения. Для проверки этого предложения была предпринята экспериментальная попытка качественно оценить относительное влияние обоих указанных эффектов на процессы усталостного разрушения полимеров. [c.187]

    Таким образом, можно утверждать, что изменение кинетики процессов усталостного разрушения полимерных материалов в инактивных жидких средах, характеризуемое уменьшением числа циклов до разрушения, нельзя объяснить только поверхностно-адсорбционным эффектом и уменьшением поверхностной энергии полимера. [c.188]

    Механизм износа. Износ — сложный вид разрушения матерпала, связанный со спецификой как поверхностных слоев, так и процессов, происходящих в местах контакта с истирающим контртелом. Износ полимерных материалов осложняется спецификой их поведения при механич. нагружении, ролью физич. состояния и его связью с режимом нагружения, механизмом деформирования, процессами деструкции и т. д. Материал изнашивается вследствие неровностей, всегда имеющихся на поверхности трения. В местах контакта неровностей возникают местные напряжения и деформации. При скольжении происходит многократное нагружение зон контакта и их усталостное разрушение. Число актов нагружения, необходимых для разрушения, зависит от исходной прочности материала, его сопротивления утомлению и от условий нагружения и может достигать миллиона. При этом износ идет как фрикционно-контактный усталостный процесс. В частном случае, когда контактные напряжения достигают исходной прочности материала (либо материал непрочен, либо велико воздействие), разрушение происходит за один или несколько актов воздействия. При этом наблюдаются наиболее интенсивные виды износа, различающиеся способом отделения частиц абразив-н ы й, когда велико внедрение выступов контртела (микрорезание), и когезионный, когда уд. силы трения достигают прочности ( схватывание — для твердых тел, скатывание — для резин). Различные виды износа характеризуются разной картиной поверхности истираемого полимера (рис. 1). [c.455]


    Роль каждого из показателей определяется тем, насколько он лимитирует сопротивление материала разрушению если материал хрупок, следует повышать его эластичность, если мягок — повышать твердость и прочность. Каждый из этих показателей для всего ассортимента полимерных материалов варьирует в десятки раз. Поэтому абразивная износостойкость полимеров может различаться не более чем в десятки раз. Усталостный же износ может меняться в тысячи и даже в миллионы раз, т. к. даже небольшое изменение (То, е , / и г приводит к очень большому изменению п, а значит и износа [см. ф-лы (1) — (4)]. Поэтому резкое повышение износостойкости возможно только при переходе от абразивного износа к усталостному — путем уменьшения контактного напряжения (гладкое контртело, малое трение) и увеличения усталостной прочности материала, а также при помощи конструктивных мероприятий и особенно перехода от скольжения к качению. [c.457]

    В стеклообразных полимерах усталостное разрушение определяется гл. обр. соотношением между временем действия нагрузки и временем релаксации. Отклонения от принципа аддитивности в основном связаны с физич. релаксационными процессами — выравниванием перенапряжений на микродефектах, переориентацией структурных элементов, гистерезисным саморазогревом. Эти отклонения значительны только в том случае, если время релаксации одного порядка с периодом цикла нагрузки. [c.351]

    Дробно рассмотрены в гл. 8 (разд. 8.2.3). При этом остался открытым вопрос о механизме распространения усталостной трещины. Всестороннее освещение данного вопроса содержится в книге Херцберга Механика деформирования и разрушения промышленных материалов [3]. В данной работе или в обзорных статьях Плюмбриджа [217], а также Мэнсона и Херцберга [218] можно найти детальное описание различных стадий роста усталостной трещины, особенностей усталостного разрушения поверхностей, различных теоретических способов вывода уравнений для скорости роста трещины и кривых a—N для множества однородных и наполненных полимеров. Для металлов эти вопросы рассмотрены в работах [3, 217, 218]. Здесь будут приведены лишь некоторые последние результаты, непосредственно связанные с цепной природой макромолекул [173, 178, 191, 215—220]. [c.411]

    Скибо, Херцберг и Мансон [191] изучали характеристики роста усталостной трещины в полистироле в интервале значений коэффициента интенсивности напряжений и частоты. Образцы с нанесенным односторонним надрезом и испытываемые на растяжение компактные образцы, изготовленные из листов промышленного полистирола (с молекулярной массой 2,7-10 ), были подвергнуты циклическому нагружению с постоянной амплитудой на частотах 0,1, 1, 10 и 100 Гц, что соответствовало скоростям роста усталостной трещины от 4 10 до 4Х X10 см/цикл. При заданном значении интенсивности напряжений скорость роста усталостной трещины уменьшается с увеличением частоты, причем само уменьшение скорости роста наиболее сильно выражено при больших значениях интенсивности напряжения. Чувствительность данного полимера к частоте во всем исследованном интервале значений была объяснена влиянием переменной компоненты ползучести. В макроскопическом масштабе поверхность разрушения была двух различных типов. Прп низких значениях интенсивности напряжений наблюдалась зеркальная поверхность с высокой отражательной способностью, которая с увеличением интенсивности напряжения превращалась в шероховатую матовую поверхность. Повышая частоту, сдвигали переход между этими типами поверхности разрушения в сторону более высоких значений интенсивности напряжений. Микроскопическое исследование зеркальной поверхности выявило распространение обычной трещины вдоль одной трещины серебра, в то время как исследование шероховатой поверхности выявляло рост обычной трещины через большое число трещин серебра, причем все они в среднем были перпендикулярны оси приложенного напряжения. Электронное фракто-графическое исследование зеркальной области выявило много параллельных полос, перпендикулярных направлению роста обычной трещины, каждая из которых формировалась в процессе ее прерывистого роста в ряде усталостных циклов. Размер таких полос соответствовал размеру пластической зоны у вершины трещины, рассчитанной по модели Дагдейла. При высоких значениях интенсивности напряжений была получена новая система параллельных следов в матовой области, которая соответствовала приращению длины трещины за один цикл нагружения [191]. [c.412]

    Анализ экспериментальных данных изучения износостойкости полимеров, находящихся в высокоэластическом (резины) и стеклообразном (пластмассы) состояниях, свидетельствует о том, что-износ — явление сложное, отражающее комплекс процессов, протекающих как в граничных слоях полимера, так и на поверхности трения. Между износом и внеи1ним трением полимеров существует прямая связь. Чаще всего износ полимерных материалов обусловлен их усталостным разрушением в результате многократной деформации полимера в пятнах фактического контакта. Усталостный износ более характерен для полимеров, находящихся в высокоэластическом состоянии. Другой вид износа связан с процессом резания системой, имеющей острые выступы поверхности полимера. Этот так называемый абразивный износ более характерен для твердых полимерных материалов (различных пластмасс). Если усталостный износ можно рассматривать как многоактный процесс, то абразивный износ является процессом одноактным. При трении полимеров по гладким поверхностям обычно имеет место усталостный износ, а при трении по шероховатым поверхностям — абразивный износ. [c.382]

    Здесь В — относительная деформация выступов (неровностей поверхности) Ящах—максимальная высота выступов, мкм р—параметр кривой опорной поверхности й — диаметр пятна касания Лиз — постоянная, зависящая от вида износа, и п — число циклов, приводящих к усталостному разрушению трущихся поверхностей. Когда а п>1, преобладает износ, связанный с микрорезанием. При Каа я-С износ прзктически полностью определяется усталостным механизмом. Если же 0,1результате процессов микрорезания и усталостного разрушения, примерно одинаковы (следовательно, эквивалентный износ определяется обоими этими механизмами). В общем случае можно считать, что при шероховатых поверхностях твердых полимеров преобладает их абразивный износ, а при гладких поверхностях—усталостный износ. [c.383]

    ПРОТИВОУТОМИТЕЛИ, хим. добавки к полимерньпи материалам, гл. обр. резинам, повышающие их усталостную вьшосливость (долговечность), т. е. число циклов деформации до разрушения, а также замедляющие изменение св-в при многократных переменных мех. воздействиях (т. наз. утомление). Утомление может вызывать изменение макроскопич. размеров образца (напр., под влиянием накопления остаточной деформации), физ. структуры (возможна кристаллизация, ориентация макромолекул), строения трехмерной сетки у сшитых полимеров, техн. св-в (напр., упругих, прочностных, диэлектрич.). [c.125]

    Со временем было установлено, что механокрекинг — разрыв полимерных цепей — не столь уж редкое явление он протекает при не очень жесжих режимах механического воздействия и даже при рравнительно небольших деформадиях полимеров в процессе их испытания, производства, переработки или эксплуатации. Поэтому механокрекинг стал рассматриваться как первопричина усталостного разрушения полимеров и связанной с ним долговечности изделий. [c.8]

    Процессы утомления и усталостных изменений жестких поли-меро1В изучены в несравненно меньшей степени, чем эластомеров. Пока что известна только общая, внешняя картина разрушения жестких полимеров в процессе однократных и многократных деформаций, дополненная некоторыми деталями физических явлений, сопровождающих эти процессы. [c.304]

    Интересная феноменологическая модель усталостного разрушения полимеров, учитывающая накопление слабых мест, предложена Бокшиц-ким [289, с. 654—667]. [c.79]

    Процесс усталостного разрушения полимеров в настоящее время представляется следующим образом возникновение первичной усталостной трещины, медленный рост ее до критической величины, катастрофически быстрое разрушение образца при создании в материале критического значения напряжения. Такая картина разрушения подтверждается фрактографическнми исследованиями 8]. В случае жестких полимерных материалов на первой медленной стадии наблюдается образование гладкой зоны, [c.176]

    Жидкая среда, контактируя с образцом в процессе усталостных испытаний при циклическом нагружении, может изменять и ослаблять саморазогрев материала, изменять характер и кинетику релаксационных процессов в субмикро- и микротрещинах, препятствовать частичному смыканию и залечиванию микротрещин и т. п. Сложность явления обусловливает определенную противоречивость имеющихся в литературе немногочисленных экспериментальных данных и их теоретическую трактовку по исследованию усталостного разрушения жестких полимерных материалов в контакте с жидкими агрессивными средами. В некоторых случаях усталостная прочность полимеров в контакте с жидкостью выше, чем на воздухе в других — контакт с жидкостью значительно снижает долговечность при циклическом нагружении. [c.177]

    При циклических нагружениях область нагрузок и удельных работ разрушения разделяется на два интервала. При малых, по больших Wu скорость роста трещины у ностоянна и не зависит от частоты (поэтому и долговечность Тд пе зависит от частоты, как и для сшитых эластомеров [7.47]. Этот режим авторы назвали усталостным режимом роста трещины. При больших W наблюдается возрастание V с увеличением частоты (квази-статический режим роста трещины). Показано далее, что имеется тесная связь между закономерностями роста трещины при статическом и циклическом нагружении. В обоих случаях аналитические выражения близки по форме, как и формулы (7.14) для эластомеров. Максимальный уровень напряжений в цикле, обеспечивающий безопасную эксплуатацию полимера при циклических нагрузках, должен быть ниже порогового. [c.217]

    Некоторые работы Лексовского с сотр. посвящены изучению механизма усталостного разрушения методом ИК-спектроскопии [7.72, 7.73]. При циклическом нагружении в полимерах (пленки ПЭ, ПП и ПЭТФ в ориентированном состоянии) процесс накопления разрывов химических связей развивается по тому же закону, что и при статическом нагружении. Продукты распада в обоих режимах одинаковы. Прямым методом наблюдались всплески перенапряжений на химических связях при каждом акте нагружения. Эти результаты подтвердили прежние выводы [c.217]

    Для оценки усталостных свойств жесткоцепных полимеров, молекулы которых содержат полярные группировки, пользуются так называемой кривой Веллера. Она отражает зависимость числа циклов деформации N до разрушения образца от величины напря- [c.230]

    Многие смеси полимеров обладают уникальными усталостными свойствами (эффект взаимоусиления) число циклов деформации до разрудюния материала для смеси оказывается во много раз (или десятков раз) больше, чем для индивидуальных полимеров. Ото особенно характерно для смесей каучуков и, по-видимому, пластмасс (напр., для смеси полиэтилена и полипропилена). Причина взаимоусиления — наличие переходного слоя, благодаря чему возникающие ири действии нагрузки трещины растут вдоль межфазной поверхности и проходимый при этом путь (а следовательно, и соответствующая энергия разрушения) существенно больше, чем в материале из индивидуального полимера. Перенапряжения в вершинах трещин при встрече с частицей дисперсной фазы быстро релаксируют, если материал частицы имеет большую податливость, чем непрерывная среда, либо рост трещины приостанавливается при встрече с частицей более жесткого полимера. [c.219]

    У. характеризуется выносливостью — числом N циклов нагружения до разрушения п))и заданном а. Напряжение стл , при к-ром происходит разрушение материала после заданного числа циклов (для полимеров обычно 10 —10 циклов), наз. усталостно й прочностью. Зависимость ме кду N и а у в режиме а— onst или между А и вдг в режиме e= onst обычно выражают графически в виде кривых усталости. Часто этп зависимости м.б. выражены аналитически. Так, для резин практически при всех нагрузках справедливо соотношение  [c.350]

    На реальных кривых усталости можно выделить три области. В области I при больших а разрушение происходит прежде, чем станет существенным повышение темп-ры образца, и саморазогрев практически но влияет на выносливость (область малоцикловой усталости). В области II число циклов нагружения достаточно велико, и саморазогрев оказывает существенное влияние на У. Повышение темп-ры образца ириводит к тому, что выносливость становится меньше гипотетич. значения, оиределяемого долговечностью, и реальная кривая усталости отклоняется от прямолинехшой зависимости. При этом характер усталостного разрушения зависит от режима саморазогрева. При стационарном режиме саморазогрева разрушение ироисходит в результате прорастания магистральной трещины, как и при статич. нагружении понижение выносливости обусловлено уменьшением Оуу с ростом темп-ры (кривая 1). При нестационарном режиме саморазогрева, к-рый обычно реализуется при высоких 03, усталостная трещина не успевает прорасти, и образец выходит из строя вследствие резкого роста темп-ры и перехода полимера в другое [c.351]

    При износе полимер подвергается механохимич. деструкции в тем большей степени, чем больше актов деформации (утомления) необходимо для разрушения. Стабилизаторы, увеличивающие стойкость полимера к термохимич. воздействию и утомлению, часто повышают изиосостойкость при усталостном истирании. [c.459]

    Накопление изменений в объеме жестких полимеров меньше, чем в эласти чных, и первичным очагом разрушения является микродефект, имеющий характер микротрещины. Поэтому усталостная прочность жестких полимеров определяется механохимическими процессами, которые развиваются на острие прорастающей при многократных деформациях трещины. [c.359]


Библиография для Полимеры, разрушение усталостное: [c.351]   
Смотреть страницы где упоминается термин Полимеры, разрушение усталостное: [c.212]    [c.328]    [c.208]    [c.14]    [c.340]    [c.306]    [c.353]    [c.229]    [c.483]    [c.460]   
Структура и прочность полимеров Издание третье (1978) -- [ c.79 ]




ПОИСК







© 2025 chem21.info Реклама на сайте