Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распространение пламени ламинарного

    Ламинарные пламена, которые получаются при спокойном истечении газов, имеют большее распространение в аналитической практике, поэтому остановимся на их. Пламя имеет сложную структуру (рис. 3.21а). Различают три зоны внутренний конус (/), промежуточную зону (2) и внешний конус (3). Поверз ность внутреннего конуса определяется положением фронта горения. Установлено, что стабильное пламя получается при соотношении скоростей истечения газов и горения 1 (2—3). Внутренний конус полый. В-тонком слое толщиной несколько десятых-сотых миллиметра происходит неполное сгорание смеси. Химические реакции, которые протекают в этом слое, являются [c.55]


    Вопрос интенсификации процесса горения важен для различных отраслей техники. Решить его можно путем подогрева топлива и окислителя, увеличением содержания кислорода в воздухе, переходом с ламинарного режима горения на турбулентный, предварительным перемешиванием горючего и окислителя. Перспективным способом следует считать метод воздействия электрического поля на пламя. Еще в 1910 г. Томсон высказал предположение о том, что образующиеся в пламени ионы и электроны должны влиять на процесс распространения пламени. Первым, кто оценил практическую значимость эффектов, наблюдаемых в пламенах при наложении электрического поля, был Бранд [1]. В дальнейшем были проведены многочисленные исследования влияния электрического поля на процесс горения. Изучались условия воспламенения, стабилизации горения, изменения формы пламени в электрическом поле и др. [c.76]

    Для бимолекулярной химической реакции, определяемой столкновениями молекул, скорость ламинарного распространения плам ци линейно увеличивается по давлению, потому что О пропорционально ( топл) > а топл пропорционально р ,  [c.199]

    Важность аэродинамических процессов для горения еще больше проявляется при горении паров тонко распыленной струи жидкого топлива (тумана), хорошо смешанного с воздухом. При скоростях потока, превышающих скорость распространения ламинарного пламени (для большинства углеводородов составляющих примерно 0,3—0,6 м сек), однородная смесь не воспламеняется и не образует устойчивого фронта пламени, если структура аэродинамического потока такова, что в потоке не создается локальных вихрей и зон обратного тока. Следовательно, чтобы стабилизировать пламя при высоких скоростях, встречающихся в реактивных двигателях, необходимо создать зоны движения потока с малыми скоростями, при которых может возникнуть пламя или аэродинамический поток такой структуры, при которой могут образоваться локальные вихри или обратные токи. [c.20]

    Для различных горючих газовых смесей должны использоваться специально сконструированные горелки. При подаче смеси газов фронт пламени поддерживается над соплом горелки за счет быстрого протока газа через сопло. Фактически скорость протока газа обычно в 2—3 раза превышает скорость распространения пламени. Наиболее распространены в практике атомно-абсорбционного анализа щелевые горелки, позволяющие получать тонкие плоские пламена с большой длиной поглощающего слоя (рис. 3.38). Горелка состоит из двух идентичных заготовок из подходящего сплава. При совмещении этих заготовок в верхней части образуется прямоугольная щель длиной до 12 см, шириной менее 1 мм и высотой около 1 см, обеспечивающая ламинарный поток газа. Обе части горелки стягиваются винтами. Горелку можно поворачивать относительно оси, меняя тем самым длину поглощающего слоя. [c.150]


    Пламя воспламенившегося топлива распространяется с различной скоростью. На скорость распространения пламени, кроме природы горючего, оказывают влияние такие факторы, как соотношение горючего и воздуха, предварительный нагрев газовоздушной смеси, характер потока смеси (ламинарный, турбулентный или переходный), каталитическое влияние стенок топочного пространства и другие факторы. [c.51]

    В горелке предварительного смешения раствор распыляют в виде аэрозоля с помощью окислителя через смесительную камеру. Полученную в результате смесь аэрозоль-окислитель затем смешивают с горючим перед введением в горелку. В отличие от предыдущего способа, в камере происходит отделение более крупных частиц аэрозоля. Это приводит к тому, что в пламя поступают более мелкие частицы аэрозоля, что обеспечивает полное испарение капель и атомизацию частиц. Однако эффективность перевода пробы в аэрозоль обычно порядка 5%. Такие пламена имеют ламинарную структуру. Для горелок предварительного смешения существенно, чтобы скорость смеси горючее-окислитель на выходе была выше скорости распространения пламени, чтобы избежать проскока и взрыва. [c.18]

    Наиболее характерным примером диффузионного пламени является пламя при горении жидкости в резервуарах, детально рассмотренное в работе [)1]. В частности, в этой работе показано, что в зависимости от диаметра резервуара режим горения может быть ламинарным и турбулентным. Реальные пожары почти всегда характеризуются турбулентным режимом горения, обусловливающим повыщенные скорости распространения пламени и выгорания ве щества (массового горения). Форма и размеры пламени тесно связаны с режимом горения. Эти вопросы рассматриваются ниже. [c.9]

    Распространение пламени в заранее перемешанных газах существенно зависит от того, есть или нет пульсаций, их интенсивность и масштаб. Аналогичное влияние оказывает турбулентность и на диффузионные пламена. Разумеется, существуют некоторые общие свойства, проявляющиеся как при наличии пульсаций, так и в их отсутствие, однако основные закономерности распространения турбулентных и ламинарных диффузионных пламен различны. [c.169]

    Рассмотрим форму и особенности широко распространенных диффузионных пламен. Диффузионные пламена наблюдаются при горении неперемешанных газов, а также при горении металлов, жидких и твердых органических и элементорганических соединений в окружающей окислительной среде. На основе представлений об определяющей роли диффузии при горении в ряде работ [2—6] проведен теоретический анализ характеристик диффузионного пламени. Бурке и Шуман в 1928 г. рассмотрели горение параллельных ламинарных потоков горючего и окислителя, движущихся с одинаковыми скоростями, и получили уравнение, описывающее форму и размеры пламени. Полученные в предположении бесконечно большой скорости реакции зависимости, определяющие форму и размеры пламени, оказались в удовлетворительном соответствии с опытом. Расчеты основывались на рассмотрении взаимной диффузии горючего газа и кислорода. Случай, рассмотренный Бурке и Шуманом, является частным, однако результаты расчетов имеют общее значение и могут быть применены, например, к диффузионным пламенам жидкостей [2]. [c.11]

    Если только скорость пламени является мерой реакционной способности, играющей существенную роль в процессе стабилизации телом плохообтекаемой формы, то пламена двух топлив должны срываться (на одной и той же установке и при одинаковых рабочих условиях) при таких коэффициентах избытка топлива, при которых их ламинарные скорости распространения будут между собой равны. В табл. 2 приводятся коэффициенты избытка исследованных здесь топлив, вычисленные путем связывания скорости ламинарного пламени изучаемого топлива со скоростью ламинарного пламени стандартного топлива. Эти расчетные коэффициенты избытка топлива весьма приближенны. О скоростях ламинарного пламени для этих топлив при начальной температуре смеси 400° К и при таких бедных коэффициентах избытка топлива, которые соответствуют срыву пламени со стабилизатора, опубликовано совсем немного данных. Поэтому приводимые в таблицах значения обычно получают экстраполяцией данных различных источников. Мы полагаем, что ошибки такой экстраполяции более существенны, чем ошибки измерений скоростей пламени в установках разного типа, выполненных различными авторами. [c.254]

    Соотношение (8-64) также непосредственно следует из (8-63). Полученные с помощью (8-64) из опытных данных по зависимости / 1/т= =/(1/Гг) значения эффективной энергии активации Ед для реакции в турбулентных пламенах близки к энергии активации основной реакции разветвления. Эта величина также близка к значению реакций в ламинарных пламенах тех же смесей. Следовательно, ламинарные и турбулентные пламена сходны в том отношении, что в них реакции развиваются в ходе перемешивания свежей смеси с продуктами сгорания. Вместе с тем различная зависимость скорости горения от скорости реакции в ламинарном и турбулентном пламенах свидетельствует о коренном различии механизма распространения пламени в условиях массообмена через молекулярную и турбулентную диффузию. [c.146]


    В ламинарном газовом потоке скорости газов. малы, а горючая смесь образуется в результате молекулярной диффузии. Скорость горения в этом случае зависит от скорости образования горючей смеси. Турбулентное пламя образуется при увеличении скорости распространения пламени, когда нарушается ламинарность его движения. В турбулентном пламени завихрение газовых струй улучшает перемешивание реагирующих газов, так как увеличивается поверхность, через которую происходит молекулярная диффузия. [c.288]

    Динамическим методом нормальная скорость распространения пламени определяется по размеру поверхности конусного фронта пламени газовой горелки типа Бунзена. Регулируя состав газовоздушной смеси, вытекающей из горелки при ламинарном режиме движения, добиваются появления устойчивого и резко очерченного внутреннего конуса горения. Поверхность этого конуса, или фронт пламени (неподвижный относительно верхнего обреза горелки), будет двигаться по направлению к газовоздушной смеси, вытекающей из горелки. Пламя в этом случае распространяется перпендикулярно к поверхности воспламенения в каждой данной точке. При этом на поверхности конуса вьшолняется равенство проекции скорости потока И, , на нормаль к образующей конуса и нормальной скорости распространения пламени и (рис. 4.23)  [c.281]

    Динамическим методом нормальная скорость распространения пламени определяется по размеру поверхности конусного фронта пламени газовой горелки типа Бунзена. Регулируя состав газовоздушной смеси, вытекающей из горелки при ламинарном режиме движения, добиваются появления устойчивого и резко очерченного внутреннего конуса горения. Поверхность этого конуса, или, что то же, фронт пламени (неподвижный относительно верхнего обреза горелки), будет двигаться по направлению к газовоздушной смеси, вытекающей из горелки. Пламя в этом случае распространяется перпендикулярно к поверхности воспламенения каждой данной [c.356]

    Скорость распространения пламени составляет 15—30 м/с. Меньшее значение относится к ламинарному режиму движения газов, большее — к турбулентному. Скорость газов должна быть > 30 м/с, иначе пламя может переместиться в зону смешения, в результате чего произойдет взрыв. [c.121]

    Пламя воспламенившегося топлива распространяется с различной скоростью. На скорость распространения пламени, кроме природы горючего, оказывают влияние такие факторы, как соотношение горючего и воздуха, предварительный нагрев газовоздушной смеси, характер потока смеси (ламинарный, турбулентный или переходный). Значение скоростей распространения пламени некоторых горючих газов, определенных статистическим методом в трубке диаметром 25 мм, приведено в табл. 22. Влияние содержания воздуха в газовоздушной смеси на скорость распространения пламени показано на рис. 30. [c.100]

    Пламена с предварительно не перемешанной смесью имеют более сложную химию, чем пламена с предварительно перемешанной смесью, так как эквивалентное отношение Ф изменяется у них от нуля (воздух) до бесконечности (чистое горючее). В области, обогаш енной горючим, происходит горение богатой смеси, а в области, обогаш,енной воздухом, происходит горение бедной смеси. Фронт пламени, который обычно характеризуется интенсивным свечением, располагается в зоне стехиометрической смеси, поскольку, как будет показано ниже, в этой зоне температура максимальна. В отличие от пламен с предварительно перемешанной смесью, пламена с предварительно не перемешанной смесью не распространяются самопроизвольно в сторону свежей непрореагировавшей смеси, и поэтому их нельзя охарактеризовать скоростью распространения ламинарного пламени. [c.13]

    Иллюстрация пламени предварительно перемешанной смеси в турбулентном потоке приведена на рис. 14.1. Предварительно перемешанные горючее и окислитель движутся вверх. Пламя предварительно перемешанной смеси стабилизируется путем рециркуляции горячего газа за плохо обтекаемым телом. Пламя распространяется от этого плохо обтекаемого тела в набегающий поток несгоревшей смеси горючее-воздух. Если набегающий поток был бы ламинарным, пламя предварительно перемешанной смеси образовывало бы плоскую V-образную структуру. В рамках обсуждения, проведенного в предыдущих главах, можно вычислить скорость распространения ламинарного пламени, которая совместно с соотношением (1.8) может быть использована для предсказания угла V-образной структуры. Однако если набегающий поток — турбулентный, то угол пламени изменяется в зависимости от локальной скорости поступления реагентов. В результате турбулентное пламя предварительно перемешанной смеси принимает форму, показанную на рис. 14.1. [c.238]

    По аналогии с ламинарными пламенами распространение турбулентного пламени предварительно перемешанной смеси обычно характеризуется скоростью распространения турбулентного пламени г>т- Дамкелер (1940) предложил новаторскую модель для этой скорости, предположив, что турбулентное пламя является сильно искривленным ламинарным пламенем. Используя соотношение [c.244]

    Применительно к условиям стационарного процесса горения (факел, пламя) можно представить себе три характерных режима распространения пламени ламинарный (нормальный), турбулентно-мелкомасщтабный, турбулентно-крупномасщтаб-ный. [c.137]

    Экспериментальные значения скоростей распространения пламени лежат в интервале между 1 и 1000 смкек. Так как эти значения скорости малы по сравнению со скоростью звука, уравнение (1.25) оказывается справедливым для ламинарных пламен. Поскольку ламинарные пламена почти изобарические, вполне оправдано отсутствие индекса р в формуле (3). По той же причине использованная выше величина Ср является теплоемкостью при постоянном давлении. [c.141]

    При абсолютно строгом исследовании гидродинамической устойчивости ламинарного пламени следует отбросить приближенное представление о пламени как о разрыве и рассматривать распространение возмущений в реакционной зоне. Такие исследования отличаются от исследований, основанных на рассмотрении модели искривленного ламинарного пламени, но будут здесь упомянуты с той целью, чтобы указать, какое место среди других исследований занимают работы Ландау и Маркштейна. Ричардсон [ 1 впервые исследовал устойчивость пламени, рассмотрев распространение возмущений в зоне пламени затем вопрос в такой постановке изучался рядом других исследователей в работах [м-99,99а] большей части этих работ, в отличие от исследований искривленных пламен, развивается теория одномерного пламени, поэтому в рассмотрение не входит длина волны возмущения. Некоторые из авторов пришли к выводу [93,94,98,99,99а] о адиабатические ламинарные пламена абсолютно устойчивы по отношению к возмущениям рассматриваемого типа, т. е. структура пламени оказывает стабилизирующее влияние, что полностью противоположно результату Ландау. Другие исследователи нашли, что у пламеп есть области [c.245]

    В соответствии со взглядами Дамкелера и Щелкина при исследовании влияния турбулентных пульсаций на распространение пламени следует различать два существенно различных случая мелко- и крупномасштабную турбулентность. Эффект мелкомасштабной турбулентности сводится к интенсификации процессов молекулярного обмена в ламинарных пламенах, возникающих в зоне горения по границам контакта продуктов горения и исходной топлив о-в оздушной смеси. В дальнейшем для краткости изложения ламинарные пламена с интенсифицированным молекуляр- [c.41]

    Карловиц рассмотрел теоретически механизм генерации дополнительной турбулентности во фронте турбулентного аламени [26]. На рис. 7.14, для упрощения задачи, изображен элемент фронта волны турбулентного горения. Область, ограниченная пунктирными линиями, есть зона свечения. Она соответствует толщине пламени, получаемого на фотографиях с длительной экспозицией. Мгновенное положение фронта пламени показано на рисунке двойной сплощной извилистой линией. Введем угол наклона ф между нормалью элемента поверхности фронта dA и направлением распространения турбулентного пламени. Так как ламинарное пламя распространяется перпендикулярно элементу фронта dA, то увеличение скорости течения газа во фронте будет равно разности между скоростью течения сгоревшего газа относительно фронта пламени и скоростью горения  [c.160]

    В потоке горючей смеси, входящей в пламя со скоростью, равной скорости его распространения, должен установиться стационарный фронт пламенп. Однако в действитольностп одного этого условия оказывается еще. недостаточно, ибо самые малые местные колебания скорости потока или скорости раснространения пламени, например вследствие искривлений его поверхности, могут привести к нарушению равновесия п смещению фронта пламени. Поэтому для установления стационарного пламени необходимы дополнительные условия, обеспечивающие его стабильность. Стабилизация пламен в ламинарных и турбулентных потоках, представляющая особый технический интерес, по существу всегда основана на создании фиксированного источника ненрерывного поджигания горючей смеси продуктами ее сгорания — например, в кольцевом пространстве, отделяющем конус пламени от края горелки, или в зоне рециркуляции за плохо обтекаемым телом, номещепным в потоке горючей смеси. [c.166]

    Третья ста ji.it я. После выброса одного пз фронтов пламо-нн из камеры распространение другого фронта происходит в условиях, аналогичных распространонню ламинарного пламепп при зажигании у открытого конца —в методе Маллара и Ле Шателье ( 11, стр. 158). Как видно [c.264]

    С учетом этих особенностей горения у пределов распространения скорость турбулентного горения и в этих 0 ытах оказывается независящей от скорости ламинарного горения и связанной с температурой горения — вывод, несовмест мый с ламинарным механизмом турбулентного горения. Альтернативным по отноше ИЮ к ламинарному горению является последовательное самовоспламенение. Это означает, что турбулентное перемешивание свежего газа с продуктами сгора ия приводит и к возникновению воспламенения и к последующему его угасанию, создавая таким образом процесс пульсирующего воспламенения. Цикл воспламенения и затухания осуществляется на протяжении времени, в течение которого в данном элементарном объеме пульсационная скорость изменяется от нуля до некоторого максимального значения и, т. е. за время, близкое 1-с характеристическому, определяемому соотношением (19.10). Соответствующий объем газа, охваченный циклом, определяется Лагранжевым путем диф-фузи 1, т. е. соотношением (19.11). На этом пути возникшее пламя затухает вследствие снижения его температуры в результате интенсивного перемешивания горящего газа со свежим по мере же ослабления перемешивания и теплоотдачи за пределы данного объема в нем возобновляется экзотермическая реакции и восиламенение. Сама периодическая смена горения и затухания, специфичная для турбулентного пламени, возможна [c.293]

    Все рассмотренные выше теории нормального распространения пламени так же как и некоторые их модификации, не вошедшие в это рассмотрение, относятся к тому случаю, когда турбулизация газового потока не играет заметной роли. Турбулентное горение теоретически вцервые было рассмотрено Дамкелером [686], которому принадлежат также обстоятельные экспериментальные исследования влияния турбулентности на бунзенов-ское пламя при числах Рейнольдса до 17 ООО. Не останавливаясь на подробном рассмотрении турбулентного горения, исследованию которого посвящено большое число работ, отметим только, что согласно Дам-келеру [686], наблюдаемое при турбулизации газа ускорение пламени обусловлено двумя факторами увеличением скорости передачи тепла и подачи газа во фронт пламени при микротурбулентности, т. е. тогда, когда размеры вызванных турбулизацией газа неоднородностей малы по сравнению с шириной фронта, и изменением формы фронта пламени при макротурбулентности, когда размеры неоднородностей больше ширины фронта. Из теоретического рассмотрения турбулентного горения следует, что скорость пламени при турбулентном горении связана определенным соотношением со скоростью пламени в ламинарном потоке для этого соотношения различными авторами в соответствии с принятыми ими допущениями были получены различные аналитические выражения. [c.500]

    Механизм распространения и структура ламинарного нламеня в однородной смеси экспериментально и теоретически хорошо изучены. Ламинарное пламя представляет собой узкую область ( фронт ), отделяюш ую продукты сгорания от свежей горючей смеси и распространяющуюся по горючей смеси вследствие совместного действия процессов молекулярного переноса и химических реакций. Толщина ламинарного фронта пламени, как правило, значительно меньше характерного размера всей области, где происходит горение. [c.167]

    Даже в тех областях, где фропт пламеии перпопдикулярен к среднему направлению раснростраиепия пламени, последнее передвигается вперед со скоростью, равной сумме нормальной скорости распространения и скорости, с которой пламя переносится турбулентным движением. Поэтому, чтобы получить полную скорость распространения турбулентного пламеии к скорости 8 , обусловленной турбулентной диффузней, должна быть добавлена нормальная (ламинарная) скорость распространения пламени 15 лам-  [c.289]

    Рассмотренное явление прокращепия распространения иламени можно объяснить уменьшением скорости распространения иламени нри движении его в зоне большого градиента скорости. На рис. 85 схематически изображено ламинарное пламя в потоке с умеренным градиентом скорости. В точке 1, [c.297]

    В отличие от ламинарных пламеи, на фотографиях турбулентных пламен отсутствует резкая граница зоны свечения. Несмотря на это, Дам-кёлер, а впоследствии большое число исследователей применили при экспериментальном определении турбулентной скорости горения принципы метода Гуи —Михельсона, измеряя объем сгорающего в единицу времени газа на единице поверхности воображаемой поверхности воспламенения. В качестве такой новерхности Дамкёлер выбрал внутренний край размытого конуса пламени (см. рис. 188), как ...геометрическое место наиболее быстрого сгорания . Соответственно внешняя, столь же неопределенная граница турбулентного конуса, рассматривается как геометрическое место наиболее медленной, ламинарной скорости горения, причем это замедление горения в пределах турбулентного пламени приписывается прогрессирующему разбавлению свежего газа продуктами сгорания [29, стр. 606]. Заметим по этому поводу, что нри любой трактовке механизма турбулентного горения перемешивание свежей смеси с продуктами сгорания следует рассматривать, как способ переноса тепла и активных центров реакции, способствующего распространению пламени, а не тормозящего его. [c.256]

    Автотурбулизация, возникающая в сферических ламинарных нламенах, на определенной стадии их распространения, связана, как показывает расчет, с достижением значений Ве > 10 , что заставляет искать ее причины не в наложении на пламя малых возмущений,а в специфических условиях раз- [c.289]

    Г1ри тепловом распространении пламени различают но )мальное (тихое) распространение Г., или дефлаграцию (последовательное воспламенение горючей смеси происходит но механизму теплопроводности и, частично, за счет диффузии активных центров), и детонацию (поджигание производится распространяющейся ударной волной). Нормальное Г. в свою очередь подразделяется на ламинарное и турбулентное. Ламинарное пламя обладает вполне определенной скоростью перемещения относительно неподвижного газа, к-рая зависит от состава смеси, давления и темп-ры и определяется только химич. кинетикой и молекулярной теплопроводностью. Такая скорость, называемая нормальной скоростью пламени, является поэтому физико-химич. константой смеси. Ламинарное пламя наблюдается в неподвижных смесях или в потоках, движущихся ламинарно. Величины скорости пламени обычно составляют в воздушных средах порядка нескольких десятков сантиметров в секунду и только для водо-родо-воздушных смесей дбстигают 2,5 м сек. В тех случаях, когда наряду с молекулярной теплопроводностью в большой степени участвует т. н. турбулентный перенос тепла, при перемешивании возникает турбулентное пламя. Скорость распространения турбулентного пламени в отличие от ламинарного зависит от скорости газового потока, что является главной и наиболее важной особенностью турбулентного пламени. Турбулентное пламя имеет большое значение в технич. процессах сжигания газообразных и парообразных горючих. [c.497]


Смотреть страницы где упоминается термин Распространение пламени ламинарного: [c.646]    [c.215]    [c.137]    [c.138]    [c.246]    [c.316]    [c.122]    [c.122]    [c.497]    [c.52]    [c.106]    [c.241]    [c.272]   
Горение (1979) -- [ c.129 , c.139 ]




ПОИСК







© 2025 chem21.info Реклама на сайте